
Minimizing Cost by Reducing Scaling Operations in
Distributed Stream Processing

Michael Borkowski, Christoph Hochreiner, Stefan Schulte
Distributed Systems Group
TU Wien, Vienna, Austria

{m.borkowski, c.hochreiner, s.schulte}@infosys.tuwien.ac.at

ABSTRACT
Elastic distributed stream processing systems are able to dy-
namically adapt to changes in the workload. Often, these
systems react to the rate of incoming data, or to the level of
resource utilization, by scaling up or down. The goal is to
optimize the system’s resource usage, thereby reducing its
operational cost. However, such scaling operations consume
resources on their own, introducing a certain overhead of
resource usage, and therefore cost, for every scaling opera-
tion. In addition, migrations caused by scaling operations
inevitably lead to brief processing gaps. Therefore, an ex-
cessive number of scaling operations should be avoided.

We approach this problem by preventing unnecessary scal-
ing operations and over-compensating reactions to short-
term changes in the workload. This allows to maintain elas-
ticity, while also minimizing the incurred overhead cost of
scaling operations. To achieve this, we use advanced filtering
techniques from the field of signal processing to pre-process
raw system measurements, thus mitigating superfluous scal-
ing operations. We perform a real-world testbed evaluation
verifying the effects, and provide a break-even cost analysis
to show the economic feasibility of our approach.

PVLDB Reference Format:
Michael Borkowski, Christoph Hochreiner, Stefan Schulte. Mini-
mizing Cost by Reducing Scaling Operations in Distributed Stream
Processing. PVLDB, 12(7): 724-737, 2019.
DOI: https://doi.org/10.14778/3317315.3317316

1. INTRODUCTION
Elasticity is a major concern in modern data stream pro-

cessing (DSP) systems [19]. In short, an elastic system is
capable of rapidly scaling up during times of increased load,
and scaling down during times of reduced load, instead of
constantly under-provisioning computational resources, i.e.,
operating with less capacity than required to handle the in-
put data rate, or over-provisioning resources, i.e., operating
with more capacity than required [1, 25]. Using the capabil-
ity of elasticity, stream processing engines (SPEs) dynami-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 7
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3317315.3317316

cally adapt to changes in the input data rate during runtime,
reducing cost while aiming at meeting a predefined Quality
of Service (QoS) level [16].

Certain properties of DSP systems can be monitored in
order to reach scaling decisions. On the one hand, the ob-
served properties may be extrinsic to the system, e.g., the
rate or type of incoming data or queries [3, 20, 46]. On
the other hand, these properties may be intrinsic to the sys-
tem, e.g., CPU load [16], memory utilization [7], network
traffic [49], or its overall performance [4]. Generally, every
scaling operation requires resources by itself, i.e., it incurs
a delay, during which the DSP system must wait for the
computational resource to be reachable, consumes energy,
leads to computational overhead [14, 35], and therefore in-
creased cost. Additional DSP operators, i.e., software re-
sponsible for the processing of data within the SPE, must
be deployed on computational resources, such as Virtual Ma-
chines (VMs). Therefore, while being crucial for elasticity,
intensive operations such as scaling and migration should be
kept at a minimum [7, 9, 22, 35].

Current approaches to scaling in DSP assume thresholds
of resource utilization, such as CPU load, as the founda-
tion for scaling decisions [3, 7, 21, 36]. The DSP system is
maintained between those thresholds. For any metric ex-
ceeding the upper threshold, additional resources are neces-
sary, and new DSP operator instances are activated (scale
up). However, a threshold-based scaling approach can re-
sult in frequent scaling operations. This, in turn, incurs an
overhead of resource usage and cost [3, 7]. In certain cases,
this overhead is necessary in order to benefit from the ad-
ditional computing power, to avoid under-provisioning, or
to save energy by scaling down. However, excessive scaling
also increases the risk of unnecessary cost [7, 35].

Metrics such as the rate of incoming data can be consid-
ered as time series, containing both long-term trends in data
rate, as well as short-term variances (spikes and valleys) [3].
The long-term trend can be the development of input data
depending, for instance, on the time of day (e.g., peak hours)
or time of year (e.g., summer holidays), while short-term
spikes might stem from spontaneous and short-lived events
like bursts in network communication. The latter represent
noise that we aim to ignore for scaling decisions.

Following this, we propose to improve classic threshold-
based scaling in DSP by improving the scaling mechanism’s
reaction to load changes. Instead of relying on one metric
and employing simple threshold-based scaling, we observe
both multiple intrinsic metrics of an SPE (e.g., CPU and
memory utilization) and extrinsic metrics, representing the

724



environment of an SPE (e.g., rate of incoming data). From
these values, we derive an estimated true inner state, ne-
glecting noise (i.e., the short-term variance) by separating
it from the long-term trend. Based on this estimated state,
more stable and robust scaling decisions can be made. The
intuition is to reduce the amount of scaling decisions while
keeping the DSP system highly adaptive to load changes.

Overall, the contributions of this work are as follows:

• We specify a control loop, describing the relationship
between the controlled system, its environment, mea-
surable feedback, and a scaling controller.

• We define a formal model for pre-processing measured
resource utilization values in order to reduce the num-
ber of scaling operations performed by DSP operators.

• We propose a concrete scaling mechanism applying an
Extended Kalman Filter (EKF) [27, 29], in order to
use knowledge about state changes in the operator’s
environment to improve scaling decisions.

• We evaluate our approach in detail using a testbed
with an image processing workload taken from the re-
search field of biomedical engineering [23].

The remainder of this paper is structured as follows: In
Section 2, we present our approach to minimize the number
of scaling operations in DSP systems. We then evaluate the
approach in Section 3, and discuss the results in Section 4.
In Section 5, we review related work. Finally, we conclude
and give an overview of future work in Section 6.

2. APPROACH
The goal of our work is to minimize the amount of scaling

operations, while maintaining rapid elasticity, to avoid the
cost of overly frequent scaling operations [3, 7, 14, 35]. We
regard each operator within a DSP separately, and measure
the amount of incoming data (data rate) and the system
state, with the goal of reaching a scaling decision. This de-
cision can be to either (a) scale up by starting more operator
instances, (b) to scale down by shutting down instances, or
(c) to remain in the same state. Each operator can be exe-
cuted using one or more operator instances, determined by
the scaling decision. We denote the set of operator instances
for any given operator as B, with instances b1, b2, b3, . . . , bn,
where n = |B|.

This work extends traditional signal filtering using EKF
in order to reach better scaling decisions. The system state
measured by the EKF-based filter is represented in a vector.
Multiple state variables (metrics) can be included in this
vector, and our general filtering approach poses no limits
to this number. Possible metrics include the system’s CPU
load [16], its memory utilization [7], network traffic [49],
throughput and queue sizes [12], or other metrics determin-
ing the system’s overall performance [4].

In the following sections, we discuss our approach. First,
in Section 2.1, we define a control loop, describing the rela-
tionship between the controlled system (the stream process-
ing operator), its environment (incoming data), measurable
feedback (the system state), and a scaling controller. Sec-
ond, in Section 2.2, we show our formal model for time series
filtering. Section 2.3 gives a detailed description of the EKF
used, with Section 2.4 showing the bootstrapping process.

Table 1: Notation

Model
B Set of operator instances
b1, b2, . . . Individual operator instances in B
Θ− Scale-down threshold
Θ+ Scale-up threshold

Time Series and Filtering
T Set of all measurement times
t1, t2, . . . Individual timestamps in T
Z Time series of system state measurements
Zt1 , Zt2 , . . . Individual state measurements at time t in Z
λ(·) Filtering (smoothing) function
λZ(t) λ at time t based on history Z
Z′ Filtered system state time series
Z′t1 , Z

′
t2 , . . . Individual filtered measurements at time t in Z′

Measurements and EKF Model
Dt Data rate at time t
∆Dt Date rate change from t− 1 to t
ut = (Dt,∆Dt) System input at time t
xt System state at time t
x̂∗t System state estimation for time t, a priori
x̂t System state estimation for time t, a posteriori
zt Measurement (observation) at time t
ẑt Measurement estimation for time t
wt System noise at time t
vt Measurement noise at time t
Q System noise covariance
R Measurement noise covariance
f(xt, ut) State transition function
h(xt) Measurement function (in our case h(x) = x)

EKF-Internal State Matrices
Pt Estimation error at time t
Ft Jacobian matrix of f(x̂t, ut)
Ht Jacobian matrix of h(x̂t)
Gt Kalman gain at time t

Miscellaneous
N (µ, σ2) Normal distribution, variance σ2 around µ
XT Transpose of matrix X
X−1 Inverse of matrix X

Section 2.5 discusses the parameters and complexity of our
approach. Table 1 gives an overview of the notation used.

2.1 Control Loop
We treat the observed operator, the rate of incoming data,

and the scaling mechanism which controls the scaling deci-
sions of the operator, as a control system. Our approach in-
volves creating a closed control loop [15], shown in Figure 1.
During operation, the system (the stream processing opera-
tor) is under constant supply of input data, measured by its
rate. Since we cannot control the amount of incoming data,
we define this as the operator’s environment1. The stream
processing operator is controlled by the scaling mechanism,
being the controller in our control loop. The controller is re-
sponsible for making scaling decisions, i.e., defining whether
the operator must be scaled up, scaled down, or can remain
unchanged. During the processing of data, the operator is
changing the system state (e.g., CPU load or memory uti-
lization), constituting the feedback, which is measured by
the controller. The controller therefore has two sources of
information for performing the scaling decisions: the rate of
incoming data, and the system state of the operator.

2.2 Filtering Model
As discussed above, we measure the system state over

time, and base our scaling decisions on the measured values.

1Known as disturbance in other literature [29].

725



Scaling Mechanism
Controller

Operator
System

Data Rate
Environment

Load Metrics
Feedback

Scaling
Decisions

Observation

Measurement

Figure 1: Overview of the proposed approach, mod-
eled as a control loop.

Time

T
o
ta

l
C

P
U

L
o
a
d

Raw Measurements Z
Trend

Figure 2: Long-term load trend (dashed) and actual,
measured values (solid).

However, we employ a filtering of the raw measurements to
create a smoother version of the measurement curve.

The time series of recorded measurements of the system
state is denoted as Z. In practice, those measurements are
offset from a trend by a certain noise. This noise can have
numerous causes, ranging from disturbances at the operat-
ing system level, hypervisor strategies at the VM level, or
workload shared with other applications. All of these as-
pects cause the system state (e.g., CPU load or memory
utilization) to exhibit high variance. Nevertheless, a certain
trend is always present, e.g., a highly demanding processing
node will have a given baseline (trend) of load throughout
its operation. Figure 2 demonstrates a scenario, using the
CPU load as an example of fluctuating system state.

Naturally, if a stream processing system bases scaling de-
cisions purely on the raw data, an excessive amount of scal-
ing operations occurs [7, 14, 35]. This is shown in Figure 3,
where the fluctuating CPU load measurements (top graph)
lead to a high amount of scaling operations (bottom graph).
Our approach applies filters to this process to reduce the
number of scaling operations, i.e., to reduce the number of
steps in the operators line in Figure 3.

Therefore, we formally define our approach as follows. We
regard a history of raw system state measurements, Z, at
various points in time t out of all measured times T , where
Zt is the measured state at time t:

T = {t0, t1, . . . , tn} (1)

Z =
⋃
t∈T

Zt = {Zt0 , Zt1 , . . . , Ztn} (2)

Based on the raw measurements Zt ∈ Z, we employ a fil-
ter, which we denote as λ(·), and apply this filter to each
Zt. This application is performed at every given measure-
ment time t and has access to all other measurement values
in Z, with the practical limitation that it can only access

Time

T
o
ta

l
C

P
U

L
o
a
d

Raw Measurements Z
Scaling Thresholds

Time

O
p

e
ra

to
rs

1

2

3

4

5 Scaling Operations

Figure 3: Scaling of operators according to thresh-
olds of the actual load, resulting in 23 scaling oper-
ations.

past measurements. We therefore define λZ(t) as the fil-
tered value of Z at time t, given all other values Zi ∈ Z
where i ≤ t. For λ, various filters can be used. In our work,
we use an EKF as a smoothing filter, which we will describe
in Section 2.3. Other filters like Linear Smoothing (LS) [42],
Total Variation Denoising (TVD) [41], or simpler versions of
the EKF [3] are used for smoothing in literature, but in most
cases not with regard to DSP (see Section 5).

We define the set of filtered measurements Z′:

∀Zt ∈ Z : Z′t = λZ(t) (3)

Z′ =
⋃
t∈T

Z′t = {Z′t0 , Z
′
t1 , . . . , Z

′
tn} (4)

Figure 4 shows a possible resulting graph of the same data
rate measurements as shown in Figure 3, using a filter, along
with the resulting scaling behavior of the system. When
compared to Figure 3, it becomes clear that the amount of
scaling operations has decreased. Note that this approach
does not guarantee that the system state is met with correct
scaling at each point in time. There is also the possibility of
under-provisioning or over-provisioning for short periods in
time, depending on the used filter, as is the nature of online
filtering. However, we show in Section 3 that the proposed
EKF-based filter performs sufficiently well.

2.3 Extended Kalman Filter
In the following, we describe the EKF used in our ap-

proach, along with the concrete state transition model.
The EKF [27] is a nonlinear generalization of the Kalman

Filter (KF) [29]. Kalman-type filters work by defining mod-
els for state transitions of the system, as well as models for
the observations (measurements) of the system. While reg-
ular KFs use purely linear transition models, i.e., matrices
and linear algebra, the EKF generalizes the approach for
nonlinear models. Instead of matrices, the EKF uses func-
tions as transition models, and requires both the transition
and observation function to be differentiable point-wise.

Note that the EKF is not the only suitable model us-
able for forecasting multivariate processes. Especially in

726



Time

T
o
ta

l
C

P
U

L
o
a
d

Raw Measurements Z

Filtered Values Z′

Scaling Thresholds

Time

O
p

e
ra

to
rs

1

2

3

4

5 Scaling Operations

Figure 4: The same scenario, with additional filter-
ing of data rate measurements. Instead of 23 scaling
operations, the system only has to perform 7, while
maintaining the same QoS level.

processes with a high potential for repeating patterns, au-
toregressive models such as ARMA or ARIMA are used [18,
44]. However, the unique advantage of EKF-based filters is
that with some (even inaccurate) knowledge of the under-
lying system model, not only the measurements of system
state are incorporated into the solution, but also the (very
accurately known) system input. At the same time, the EKF
maintains covariance matrices determining the current con-
fidence into each data source (both system state and input).

The first steps for defining our EKF are as follows: The
system state is denoted as x. This vector can include mul-
tiple state variables (metrics), such as CPU and memory
utilization, network traffic, throughput or queue sizes. Since
the state changes over time, we use xt to indicate the state at
time t. Furthermore, our system is controlled by an external
input, which is the rate of data sent to the stream process-
ing operator. We observe both the momentary data rate at
time t, defined as Dt, as well as the change in data rate com-
pared to the previous value, ∆Dt, with ∆Dt = Dt −Dt−1.
Together, we define the input to the stream processing oper-
ator at a given time t as ut = (Dt,∆Dt). Finally, since our
operator is running on a real-world computer, and therefore
is subject to certain fluctuations in performance, the state
also encounters a particular noise. We denote this system
noise as w, or, again, wt for a given time t. Finally, we
define our state transition model, which models the system
state xt, based on the previous system state xt−1, the input
ut−1, and the system noise wt:

xt = f(xt−1, ut−1) + wt (5)

where f(·) represents the state transition function, which is
based on the last state xt and the system input ut. The sys-
tem noise wt, according to the original definition of KFs [29],
is assumed to be zero-mean Gaussian noise2 with the covari-
ance matrix Q:

wt ∼ N (0, Q) (6)

2We discuss this assumption of zero-mean Gaussian noise
for our scenario in Section 3.3.

The state transition function f(x, u) can be chosen inde-
pendently of the remaining part of this state system. In
our scenario, for simplicity, we use a linear state transition
function, based on the current system state x, and the in-
put u = (D,∆D), defined as f(x, u) = x + a · D + b ·∆D.
However, due to the usage of EKF, a nonlinear state tran-
sition function could also be used if nonlinear dynamics are
present and known. The vector parameters a and b define
the sensitivity of the EKF to the input data rate, and must
be defined according to the workload. Currently, these pa-
rameters are determined using ordinary least squares (OLS)
linear regression. Future approaches may use more elabo-
rate self-tuning techniques, e.g., Machine Learning (ML).

Next, we take into account the measurement of the system
state. There are several mechanisms for measuring system
load, e.g., stand-alone programs like top and ps, or APIs for
direct measurements. The EKF definition includes a mea-
surement function, which we denote as h(·). This function
takes the system state x and transforms it to a measured
value. This value is again subject to noise, this time, stem-
ming from the measurement process itself. We call this the
measurement noise and denote it as vt. For physical sen-
sors, this represents a measurement error or inaccuracy. In
our scenario, this measurement error represents the inaccu-
racy of measuring CPU load. The resulting measurement is
denoted as zt, and defined as follows:

zt = h(xt) + vt (7)

where vt, the measurement noise, is again assumed to be
zero-mean Gaussian noise, and its covariance matrix is as-
sumed to be R:

vt ∼ N (0, R) (8)

In contrast to physical sensors like temperature or light
sensors, which often have nonlinear characteristics, or re-
quire additional unit conversion, we do not need transfor-
mations in the process of measurement. Therefore, we can
simply define h(xt) = xt, and our measurement becomes:

zt = xt + vt (9)

Figure 5 gives an overview of the dynamics of the de-
scribed state system. While the input to the system (u) is
known but not controllable, the system’s true state is hid-
den from the controller. This includes the noise influencing
the system state itself (w), as well as the noise of the mea-
surements (v). Only the result of the measurements (z) is
visible to the controller. As described before, u = (D,∆D),
f is the state transition function, h is the identity function
h(x) = x, w ∼ N (0, Q), and v ∼ N (0, R).

Note that the general definition of EKF allows both f(·)
and Q, as well as h(·) and R to be dependent on the time t,
i.e., the notations ft(·), Qt, ht(·), and Rt are used, respec-
tively. Since we use time-constant definitions for f(·), Q,
h(·), and R in our approach, we drop the index t.

Therefore, our controller makes scaling decisions based on
the rate of incoming data (u) and the (noisy) measurement
of system state (z). As stated in Section 2.2, we do not
directly use the measurement z, but instead, employ the
estimation feature of the employed EKF, which yields an
estimated version of the next system state, denoted as x̂.

727



Input
Known

System State
Hidden

Observation
Visible

Time t Time t+ 1

· · ·

ut: Data Rate
Input

xt
State

w
Noise

f +

h

+
v

Noise

Zt: Load Metrics
Measurement

ut+1: Data Rate
Input

xt+1

State

w
Noise

f +

h

+
v

Noise

Zt+1: Load Metrics
Measurement

· · ·

Figure 5: The state transition system we use as a base model, where the system input u = (D,∆D) is the data
rate and its change, f is the state transition function, x is the system state, z is the load measurement, h is
the identity function h(x) = x, w ∼ N (0, Q), and v ∼ N (0, R).

The nature of EKF is that it performs a continuous loop of
predict-update iterations. Given a current state, in the pre-
dict step, the EKF performs a prediction of the next system
state. In addition, the EKF also provides the prediction
error. Then, provided with a (noisy) measurement of the
actual value, the EKF recalculates its prediction error, and
provides a new prediction in the update step. As a result,
the EKF is constantly correcting its prediction, provided
with noisy measurements, while maintaining a balance be-
tween inaccuracy in measurements, as well as external dis-
turbances. Furthermore, this process takes into account the
input of the system, i.e., control variables which are manip-
ulated externally. In our scenario, this is the amount of data
rate and its change, i.e., u = (D,∆D).

Predict Step: At any point in time t, from a given pre-
vious estimated system state x̂t−1 – either the initial
state (see Section 2.4 for a description of bootstrapping
in our approach) or the previously estimated state –
and the previous system input ut−1, the EKF derives
both the estimated a priori next system state x̂∗t , the
estimated next measurement ẑt, as well as the estima-
tion error Pt:

x̂∗t = f(x̂t−1, ut−1) (10)

ẑt = h(x̂∗t ) (11)

Pt = Ft−1 Pt−1 F
T
t−1 +Q (12)

where Ft−1 is the Jacobian matrix of f , i.e., the matrix
of partial derivatives of the state transition function for
the current state and input f ′(x̂t−1, ut−1), Pt is the
prediction error (covariance matrix) at time t, and Q
is the covariance of the system noise as defined above.
Pt is computed by applying the Jacobian matrix of the
state transition matrix F to the previous prediction
error, then re-applying its transpose FT , and finally
adding the system noise covariance Q. This predic-
tion error will later be used to calculate the Kalman

gain Gt. Its definition is derived from the EKF pro-
posal [27]. The initialization value for P0 is discussed
in Section 2.4.

Update Step: After a new measurement zt is taken, the
EKF updates its matrices and vectors to reflect the
new data. First, the Kalman gain Gt is calculated,
which is used to create the new a posteriori system
state estimate x̂t. Note that the difference between
the a priori estimate x̂∗t and the a posteriori state
estimate x̂t is that the a posteriori state incorporates
the new measurement (and therefore, new knowledge)
into the value provided by the a priori state before the
measurement.

The update step is calculated as follows:

Gt = PtH
T (H PtH

T +R)−1 (13)

x̂t = x̂∗t +Gt(zt − ẑt) (14)

where H is the Jacobian matrix of h, i.e., the matrix of
partial derivatives of the measurement function for the
current measurement h′(x̂t), and R is the covariance of
the measurement noise as defined above. Again, this
definition is derived from [27]. The Kalman gain Gt

is used in the estimation of the next system state x̂t
and represents the (estimated) influence of the change
in measurement on the actual system state.

Revisiting Section 2.2, we are now able to define the fil-
tered version of z, i.e., Z′ = λZ(zt), by using the cumulative
output of the EKF estimations for each operator instance:

Z′t = λZ(zt) =
∑
b∈B

x̂bt (15)

where B, as defined at the beginning of Section 2, is the
set of all operator instances for the operator type taken into
account, b ∈ B denotes the iteration over all operator in-
stances, and x̂bt denotes the EKF estimation x̂ at time t for
the operator instance b.

728



2.4 Bootstrapping
First, the EKF must be initialized. Since especially at the

beginning of the lifetime of an operator, a certain amount of
time must be chosen in order for the operator to stabilize,
we propose a simple bootstrapping process. In our work, we
distinguish between a cold start and a warm start. If the
operator has never been executed before, and therefore its
behavior is unknown, a cold start is executed, and a default
number of instances is initiated. In our current implemen-
tation, this default number is set to one, i.e., if the system
has no knowledge about the operator, a single instance of it
is spun up. In case the system has already used this opera-
tor before, and data about its behavior has been collected,
we execute a warm start, and use the average number of
instances of the operator used in the last run. This is done
to use a value as close to the likely required scale as possible
during the bootstrapping process.

After the initiation of the operator instances, we begin
a two-step parameter bootstrapping. First, a dead time is
implemented, during which no scaling decisions are taken,
and only measurements of the input data rate (u) and the
system state (z) are taken and collected. After the dead
time, the EKF is initialized with the following parameters.

Measurement Noise Covariance Matrix R: Since we
cannot distinguish between measurement noise and sys-
tem noise just by measuring the system state (z), we
propose calibration measurements using FakeLoad [43],
which is a dedicated load generator. Given a relatively
noiseless load generation, all measured variance repre-
sents measurement noise and constitutes our R.

Initial State Estimation x̂0: To initialize the state esti-
mation, we use a simple weighted average of the mea-
surement of system state (z) during the dead time.
We weight the system state measurements by recent-
ness, where each weight is indirectly proportional to
the time passed since the measurement (i.e., its age):

x̂0 =

n∑
i=1

i

∆n
zi (16)

where n is the number of z measurements, zi is the ith

measurement and ∆n is the nth triangular number3.

Initial State Estimation Covariance Matrix P0: This
parameter determines the covariance of the prediction,
i.e., gives a measurement of the confidence in the esti-
mation of the initial system state x̂0. Since we derive
x̂0 from a weighted mean of measurements of z during
the dead time, we use the same technique to derive P0:

P0 =
n∑

i=1

i

∆n − 1
(zi − x̂0)2 (17)

where ∆n− 1 represents Bessel’s correction for an un-
biased estimator of covariance [40].

3Triangular numbers are defined as ∆n =
∑n

x=1 x.

System Noise Covariance Q: For the system noise co-
variance, we use the same value as for P0, but reduced
by the previously determined measurement noise:

Q = P0 −R (18)

where we assume that P0 > R always holds. The
rationale behind this is that P0, stemming from the
observation during the dead time, should reflect both
the system noise (Q) and the measurement noise (R).
Note that while Q and R are constant in our approach,
Pt is adapted by the EKF over time, so the relation-
ship Q = Pt − R only holds for t = 0. Afterwards,
during the course of the operation of the EKF, as the
EKF converges [27], P decreases over time.

After the dead time, we define an ease-in time, during
which the EKF is executed, but its estimates are not yet
used. Only after this second phase of the bootstrapping
process, the EKF estimates are used for scaling decisions.
The time durations used for both the dead time and the
ease-in time are parameterizable. In our experiments, we
find that 10 seconds are sufficient for both parameters.

2.5 Parameter and Complexity Analysis
In the following, we summarize the parameters required

for our filtering approach, and discuss its computational
complexity with respect to time and space.

We assume that the metrics selected for scaling (contained
in the vector z) are decided in advance. For instance, in our
evaluation in Section 3, we will use CPU and memory uti-
lization metrics. Furthermore, we assume that the input to
the system (u), is also defined in advance. In our evaluation,
D and ∆D constitute this input. The measurements z are
assumed to be performed with a certain accuracy, defined
by a zero-mean Gaussian noise with covariance R. We show
in Section 2.4 how to determine this parameter, and eval-
uate this in Section 3.3. Furthermore, the input transition
function f constitutes a parameter of our approach. In our
evaluation, we use the linear function x + a · D + b · ∆D,
where a and b are parameters determining the sensitivity of
the EKF-based filter to the input data rate. Finally, the
state x itself is assumed to be subject to zero-mean Gaus-
sian system noise with covariance Q. Like R, Q constitutes
a parameter, and in Section 2.4, we show how to determine
its value. Finally, the duration of both the dead time and
the ease-in time, also described in Section 2.4, constitute
parameters relevant to the bootstrapping process.

We now analyze the computational complexity of our fil-
tering approach. In the following, n denotes the number of
elements of the system state vector x, and m denotes the
number of elements in the measurement vector z. An EKF
iteration (predict-update) is required every time new mea-
surements are available. We use a measurement frequency
of 2 Hz to remain well below the time required to spin up
operator instances, and provide the EKF with sufficiently
frequent data. The predict step, shown in (10)–(12), entails
the application of f (an m × n operation), the estimation
of z using h (an n × n operation), and the calculation of
Pt (multiple n × n operations). The update step, shown in
(13)–(14), consists of the calculation of the Kalman gain Gt

(one 1×n and multiple n×n operations), and the estimation
of the new system state x̂, consisting of two 1 × n and one

729



n × n operation. In summary, the EKF computation time
is in O(n2m).

With regard to space, EKF has the benefit of not keep-
ing history, and therefore the EKF state size is constant over
time. It consists of the two state estimation vectors x̂∗ and x̂
(cardinality n), the measurement estimation vector ẑ (car-
dinality m), and the matrices P and Gt (cardinality n×n).
Overall, the space required for the EKF is in O(n2 +m).

3. EVALUATION
In order to evaluate our solution, we perform a series of

experiments. In the following, we describe the testbed, the
experimental workload, and our evaluation method.

3.1 Experimental Testbed
As outlined in detail in Section 3.2, the experiments in-

volve the parallel stream processing of large amounts of
images using a private cloud platform. This platform is
a KVM-based OpenStack instance running on eight nodes,
each with four Intel Xeon E3-1230 v6 CPU cores. The total
memory is 128 GB. The DSP operator instances consist of
Java applications, created specifically for this experiment,
and make use of ImageJ4. The system of operator instances
constitutes our experimental DSP platform.

Operator instances are executed on VMs, where each VM
is exclusively assigned one physical core. Depending on the
scaling decision, we either spin up additional VMs with new
operator instances, or spin down VMs. In this evaluation,
we only regard one operator type, with potentially multi-
ple operator instances. We use stateful operator instances,
therefore, state must be managed during scaling (see Sec-
tion 3.2). Including both VM boot time and state transfer,
preliminary experiments have shown that an operator in-
stance takes between 5 and 25 seconds to be ready. Once
available, running operator instances are supplied with im-
ages on a round-robin basis from an input queue. While the
input queue serves data to the operator instances in FIFO
order, overall, FIFO order is not guaranteed, since instances
might process data at different speeds. We perform no re-
synchronization after processing, as our workload processes
images individually.

3.2 Workload
For our workload, we use images submitted to the DSP for

processing, which is a well-known DSP use case, e.g., [47],
as well as queries for certain pixel metrics gathered during
the stream processing of the images.

We vary the amount of images submitted to a given op-
erator according to patterns in three distinct workload sce-
narios. The images processed are taken from a real-world
biomedical engineering use case [23], where images of bio-
logical cells, obtained from tissue samples and taken using
fluorescence microscopy, are analyzed for certain properties.
Each image has around 1.7 megapixels, is originally in TIFF
format, and around 1.3 MB in size. Furthermore, each im-
age is given Cartesian (X/Y) coordinates determining its
position within the overall tissue sample. It is the task of
the operators to apply a set of image filters (Gaussian blur,
split into RGB channels, edge detection, and object count).
In the real-world use case, these filters are used to count

4https://imagej.nih.gov/ij/

biological cells with a given fluorescent marker. Our work-
load is mainly computationally intensive and therefore CPU
bound, state is stored in memory, and the only I/O require-
ment is the transmission of data itself.

With an average rate of 1 per 100 images, we also sub-
mit queries, where details about pixel intensities regarding
a randomly chosen X/Y position in the last 1000 images are
requested from the operator. The query consists of the X/Y
position, and the return value is a vector containing the last
1000 pixel intensities (consisting of R, G, and B, each). This
is done to calculate the distribution of pixel intensities for
a specific pixel, allowing the scientists to assess the signifi-
cance of this particular X/Y position for the result (i.e., to
determine the significance of certain areas within the over-
all processed image). Therefore, the operator is required to
maintain state containing this information, namely a sliding
window of length 1000 (count-based, slide of 1).

We employ sharding for processing these queries, where
each operator instance is assigned an equally large region
within the X/Y plane of the overall cell tissue. Each instance
must maintain any state required to respond to queries about
its area of responsibility. This implies that during scaling
operations, state must be transferred between operator in-
stances, and queries for this particular area can only be pro-
cessed after the state transfer is finished.

SLAs are employed for both the image processing requests,
as well as the queries. The SLA for images is a maximum
processing time of 5 seconds, while the SLA limitation for
queries is one second. Any processing duration in excess of
these deadlines poses an SLA violation.

The variation of workload amount is performed according
to three different workload scenarios:

Pyramid: This scenario is generated synthetically using a
step-wise increase of the amount of images submitted
to the operator input queue, followed by a likewise
reduction of this amount, and a repetition of this pro-
cess for the entire duration of the simulation run. This
generates a pyramid-like data rate pattern.

In this work, we use 0 and 60 as the minimum and
maximum amount of images per second, respectively.
The increase per step is 15 images per second, and each
level is held for 130 seconds. These values are chosen
to create an easily measurable pattern of usage, while
using data rates and timings similar to the real data
trace (Lab) described below.

Square: Another synthetic pattern is generated by alter-
nating between a low amount of images, and a high
amount of images per second used for input to the op-
erator. In this work, we use 1 and 65 as the minimum
and maximum amount of images, respectively, perform
instant changes to the data rate, and hold both values,
i.e., 1 and 65, for 370 seconds. This pattern allows us
to analyze the impact of very sudden changes in work-
load on the filters.

Lab: This scenario stems from the used dataset and rep-
resents the amount of data processed in the lab. It
is not synthesized, but represents real-world observa-
tion of the amount of recorded images. This real-life
pattern contains both rapid and smooth changes and
allows us to measure the behavior of our solution in a
usage pattern close to a real-world scenario.

730

https://imagej.nih.gov/ij/


0 200 400 600 800 1,000 1,200 1,400 1,600
0

20

40

60

80

Time [s]

In
p
u
t
W
o
rk
lo
a
d
[i
m
a
g
es
/
s]

Pyramid Square Lab

Figure 6: Excerpt of the workload scenarios used in
our evaluation.

Figure 6 shows an excerpt of the input workload pattern
for all three scenarios. We use the first two scenarios, i.e., the
synthetic patterns Pyramid and Square, to analyze in detail
the performance of our algorithm in extreme cases, such as
the rapid increase or decrease of arriving data. We then
additionally use the third scenario, i.e., the Lab scenario, to
verify applicability in a real-world setup.

3.3 Evaluation Methodology
We perform the experiment in various configurations, and

repeat each configuration 20 times (20 runs). Measured val-
ues are averaged and recorded together with their standard
deviation σ. One run lasts 2700 seconds (45 minutes).

We use three filters in our experiments, consisting of the
presented EKF-based approach (denoted as EKF) and two
baselines for comparison (denoted as PURE and GW). The
PURE filter is the identity function, i.e., no value filtering is
used. The GW filter uses the Generalized Weierstrass (GW)
transform. The GW transform adds the variance parameter
t to the standard Weierstrass transform [48]. This parame-
ter influences the radius (variation) of the smoothing effect
provided by the Gaussian kernel. The kernel used in the
convolution is:

1√
2πt

e−
x2

2t (19)

where x represents the time ordinate and t denotes the vari-
ance. This notion is in line with existing literature [48].

For the implementation, we use a rectangle window func-
tion. Due to the low measurement frequency compared
to the computational capacity (2 Hz), a sufficiently large
window size is feasible and has no significant impact on
the result, since the weights for very old measurements are
marginally low. We use a window size of 1 minute.

The parameter t is dependent on the system used, and is
best set to a value allowing for sufficient smoothing while
minimizing the delay of edge detection. In the frequency
domain of the Fourier analysis of our data, no signal distin-
guishable from noise is present above 0.3 Hz. We therefore
set t = 32 = 9, i.e., the wavelength for 0.3 Hz in seconds,
squared for variance. A discussion of Gaussian kernels and
their usage within signal processing can be found in [33].

Since we perform the filtering live and cannot access fu-
ture values for our calculation, only the left side of the sym-
metrical kernel is in effect, denoted by the range x ≤ 0 and
containing past measurements.

A major flaw of all algorithms using linear smoothing
methods such as Gaussian-type transforms like the GW trans-
form is the fact that due to the averaging performed in these

Table 2: Results of sensitivity analysis for Θ− and
Θ+ (n = 180, all σ < 1000). Best results (least SLA
violation) are underlined.

Θ+

50% 60% 70% 80% 90% 100%

Θ−

40% 65.144 63.596 63.554 61.160 69.434 67.850
50% 63.632 61.484 60.056 62.450 67.244
60% 61.370 65.000 65.678 69.098
70% 67.628 69.668 75.818
80% 79.508 80.168
90% 79.154

algorithms, they also smooth out edges in the signal. In elas-
tic stream processing, this means that changes in the data
rate are not detected immediately, and thus scaling opera-
tions are delayed by design. Furthermore, such algorithms
only provide decisions whether to scale up or down, while
the EKF also indicates how many additional instances are
required. This is due to the inclusion of extrinsic metrics by
the EKF, such as the input data rate.

All filters used in the evaluation, i.e., PURE, GW, and
EKF, are presented with measurements of the system state.
In our scenario, we measure the CPU and memory utiliza-
tion, however, the approach is generally applicable to any
(numeric) metrics. Note that other metrics might require
additional tuning of the transition function f(·) used in (5).
The filtered version of the measurements, reflecting the ap-
proximated internal system state, is then used to find scaling
decisions. We use threshold-based scaling to evaluate both
filters, a technique commonly used in literature [6, 21, 37].
Scaling is performed based on the average value of all op-
erator instances, taking into account every metric. Scaling
up is performed if at least one metric is above the scale-up
threshold. Scaling down is performed if all metrics are below
the scale-down threshold. This is used to avoid bottlenecks
stemming from single metrics.

We therefore define two thresholds, Θ−, representing the
scale-down threshold, and Θ+, representing the scale-up
threshold. There are various means of choosing thresholds,
including automatic learning of parameters. Such learning is
not within the scope of this paper, but existing approaches,
e.g., [36], could be integrated into our work.

Instead, we perform a 20-fold sensitivity analysis to iden-
tify both thresholds. The sensitivity analysis is performed
for all filters (PURE, EKF, GW) using the three evaluation
scenarios (Pyramid, Square, Lab), thus covering the entire
parameter domain of this evaluation. Only meaningful val-
ues for Θ− and Θ+, i.e., Θ− < Θ+ are used. For all thresh-
old combinations, we measure the resulting amount of SLA
violations. Table 2 shows the resulting averages of all fil-
ters and scenarios. We observe that Θ+ = 80% consistently
provides optimal results. Furthermore, Θ− = 50% provides
optimal results, however, with all three filters, Θ− = 40%
is a close runner-up, and we therefore choose Θ− = 45% for
our evaluation. Similar threshold values are used in existing
literature [17, 30].

In addition, we provide experimental verification for the
assumption proposed in Section 2.3, according to which the
measurement noise of CPU load follows a zero-mean Gaus-
sian distribution. By using FakeLoad [43] in preliminary ex-
periments, we verify that the variance of the measurement
is indeed distributed in a sufficiently uniform manner. We
perform a 20-fold sensitivity analysis, and while the mea-

731



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

CPU Load Introduced [%]

C
P
U

L
oa
d
M
ea
su
re
d
[%

]
Desired Mean Measured Mean Measured σ

Figure 7: Sensitivity analysis of CPU load measure-
ment noise to CPU load.

sured σ does vary, the skew we encounter is not significant
to our evaluation. Figure 7 shows the mean data of these
measurements. Measurements for memory utilization show
almost no measurement noise.

4. EXPERIMENTS AND RESULTS
As described in Section 3, we evaluate our approach us-

ing a total of nine experiment configurations (three filters,
three workload scenarios). Each configuration is executed
20 times, and each run lasts 45 minutes. In total, 135 hours
of execution time are required for our scenarios.

During the experiments, we record the operators’ CPU
and memory utilization, the amount of running VMs, the
image processing durations, and the SLA violations (see Sec-
tion 3.2). For these metrics, we use the average of all 20 runs
for each configuration in order to smooth out measurement
noise introduced by the experimentation testbed.

We show an example of individual runs to demonstrate
the overall functionality of our evaluation approach in Sec-
tion 4.1. In Section 4.2, we present the aggregate results of
our experiment runs. We discuss the results in Section 4.3.

4.1 Exemplary Runs
We first show results from excerpts of individual results, in

order to demonstrate the functionality of our EKF approach
and its effects on the scaling behavior of the system. Figure 8
shows an excerpt of three experiment runs. All three runs
use the Pyramid workload scenario, and apply either the
PURE, GW, or EKF filter. For all three runs, we show
the resulting amount of running VMs on the left ordinate.
Additionally, for reference, we show the input workload (in
images per second) on the right ordinate.

We make the following observations during the analysis of
this experiment excerpt:

• GW shows the anticipated delay in reaction (e.g., around
t = 200, t = 300, t = 410), which is due to the fact
that GW can only provide scale-up or scale-down in-
structions, but cannot dictate how many VMs are to
be spun up or down. Since PURE reacts to changes
directly, such delay is not observed for PURE.

• PURE shows excessive scaling operations, reflected in
variation of VM count, which is due to the relatively
high fluctuation of system state measurements. GW
also suffers from such fluctuations, albeit to a lesser
degree.

200 300 400 500 600 700 800 900 1,000
0

5

10

15

20

25

30

Time [s]

R
u
n
n
in
g
V
M
s

0

40

80

120

In
p
u
t
W
o
rk
lo
ad

[i
m
ag

es
/
s]

PURE GW EKF Input

Figure 8: Three Pyramid experiment runs, using
PURE, GW, and EKF. The resulting amount of run-
ning VMs is shown (left ordinate) together with the
input workload (right ordinate).

• GW suffers from overshoot when transitioning from
a no-load to a load condition (seen around t = 220).
This is again due to the fact that GW only gives a
scale-up response if Θ+ is exceeded by any metric. As
VMs are spun up, Θ+ remains exceeded, and espe-
cially in the initial start of load (t = 170), this causes
overshoot.

• EKF shows numerous spikes, where an excessive num-
ber of VMs is activated for a load increase. While
these spikes are unfavorable, their amount is negligible
compared to the frequent scaling of GW and PURE.
Further fine-tuning of the state transition function can
be used to further reduce these artifacts.

• The crucial advantage of EKF, its potential to not only
provide scale-up and scale-down instructions, but also
to dictate how many VMs are required to be spun up
or down, can be observed. The EKF VM amount, once
settled, remains mostly stable.

• EKF, similarly to GW, also exhibits a minor amount
of fluctuation when transitioning from a no-load to a
load condition. Several scale-up and also some scale-
down operations take place around t = 170.

• However, EKF settles in a significantly more stable
way, and seldom requires correction; an example for
this can be seen around t = 880. While EKF also
shows visible overshoot, this overshoot is minor, and
is corrected very soon.

• It is visible that EKF often uses more VMs than GW
and PURE, which is caused by its parameters a and
b, i.e., the sensitivity to the input data rate. As we
will later see in Section 4.2, while this effect causes
more immediate cost due to an increase of VM time
required, it leads to substantial reduction of SLA vio-
lations and total processing time.

• GW and EKF cause the system to react in an asym-
metrical way when considering scale-up and scale-down
operations. This is visible when observing the first re-
duction of workload around t = 650. In both cases,
the system does not start scaling down until the next
workload reduction. This behavior is due to the nature

732



of threshold-based scaling, where a given demand can
have multiple different scales while keeping the system
load within the thresholds.

• PURE does not exhibit this asymmetry, which we at-
tribute to its frequent scaling operations. PURE is
therefore more likely to traverse across its thresholds
and does not “linger” in a scaled-up state.

In Figure 9, we study in detail the behavior of EKF dur-
ing the run shown in Figure 8. Since during most of the
experiments, the CPU load was the factor limiting scaling
operations, we focus on this metric in this analysis. On
the left ordinate, we show the measured CPU load, and the
EKF-filtered measurement. Both of these numbers are rep-
resented averaged over all operator instances. In addition,
like in Figure 8, for reference, we show the input workload
on the right ordinate.

Here, we make the following observations:

• Generally, EKF provides the expected smoothing of
the measured system state.

• While mostly ignoring noise, EKF reacts promptly to
changes caused by actual workload increase. In some
situations, EKF yields values larger than 1.0, which,
in addition to the scale-up decision itself, provides an
indication of how many more instances are required.

• We see that the correction around t = 880, mentioned
in the previous findings, is due the load being close to
Θ+ after the workload decrease at t = 800, and finally
reaching Θ+ at t = 880, where the aforementioned
correction takes place, scale-up is performed, and the
average load drops again until t = 920.

Summarizing the findings from the exemplary runs, we
confirm that the EKF-based filter is working as intended,
and the results are qualitatively consistent with the expec-
tations. While naturally the performance of GW could be
further increased, especially the low-amplitude fluctuations
could be further reduced by fine-tuning parameters, the over-
all aspects – that is, the delayed response, overshoot, and
overall fluctuation of GW – remain.

200 300 400 500 600 700 800 900 1,000
0

0.25

0.5

0.75

1

1.25

Time [s]

A
ve
ra
ge

L
oa
d
p
er

In
st
an

ce

0

25

50

75

100

125

In
p
u
t
W
or
k
lo
ad

[i
m
ag
es
/s
]Measured EKF Input

Figure 9: A detailed view of the measured and EKF-
filtered CPU load in the EKF configuration run, to-
gether with the thresholds Θ− and Θ+ (all: left or-
dinate) and the input workload (right ordinate).

4.2 Aggregate Results

Table 3: Aggregate results for the Pyramid scenario.
Lowest results are underlined.

Metric PURE (σ) GW (σ) EKF (σ)

Total VM Time [1000 h] 8.0 (0.2) 8.4 (0.2) 8.9 (0.3)

Scaling Events 420.6 (11.5) 304.6 (10.5) 58.5 (8.5)

Image Processing Time [s] 2.7 (0.1) 2.1 (0.2) 1.5 (0.7)

Query Processing Time [s] 0.6 (0.1) 0.5 (0.1) 0.3 (0.2)

SLA Violations [1000] 53.8 (0.5) 51.7 (0.7) 47.1 (1.3)

Table 4: Aggregate results for the Square scenario.
Lowest results are underlined.

Metric PURE (σ) GW (σ) EKF (σ)

Total VM Time [1000 h] 8.6 (0.2) 9.0 (0.2) 9.2 (0.5)

Scaling Events 326.1 (3.3) 294.2 (2.4) 28.5 (13.5)

Image Processing Time [s] 4.6 (0.1) 3.9 (0.2) 1.8 (0.1)

Query Processing Time [s] 0.9 (0.1) 0.8 (0.1) 0.3 (0.1)

SLA Violations [1000] 63.2 (0.4) 63.9 (0.2) 47.6 (2.6)

Table 5: Aggregate results for the Lab scenario.
Lowest results are underlined.

Metric PURE (σ) GW (σ) EKF (σ)

Total VM Time [1000 h] 9.9 (0.2) 10.6 (0.4) 12.1 (1.0)

Scaling Events 423.45 (12.6) 288.0 (18.2) 54.6 (4.2)

Image Processing Time [s] 3.0 (0.1) 2.7 (0.1) 1.6 (0.4)

Query Processing Time [s] 0.8 (0.1) 0.5 (0.1) 0.3 (0.1)

SLA Violations [1000] 69.9 (0.9) 67.0 (0.9) 63.8 (3.6)

In this section, we present the overall results of our exper-
iments, averaged over 20 runs. We measure the total VM
time consumed (measured per second, expressed in hours),
the amount of scaling events, the average processing time for
images and state queries, and the amount of SLA violations.

Tables 3, 4, and 5 show the results for Pyramid, Square,
and Lab, respectively. Since we cannot assume equal vari-
ances, we use Welch’s t-tests for determining statistical sig-
nificance. We perform a test for each pair of values mea-
sured using PURE, GW, and EKF. We can reject H0 (i.e.,
claim significance) for all value pairs except the total VM
time using Square with GW and EKF (Table 4, first row,
GW and EKF), where we cannot reject H0. The p-value is
0.1092, i.e., rejecting H0 would yield a 10.92% likelihood of
a type I error. For all other tests, where we can reject H0,
the p-values are less than 0.004. Therefore, the following
observations are based on statistically significant results.

The standard deviations of all measurements are relatively
low (since all p-values are below 0.004), which indicates ex-
perimental consistency. While the order of standard devia-
tions varies from scenario to scenario, due to the low devia-
tions, this does not pose a risk to our evaluation.

Comparing the measured means, we observe that all sce-
narios show consistent results. EKF performs best for all
metrics except the total VM time consumed. This means
that EKF provides a reduction of scaling events, a decreased
workload processing time, and less SLA violations, at the
cost of VM time. We provide a break-even analysis for this
trade-off in Section 4.3.

For all metrics, the order between PURE, GW, and EKF
is consistent for all scenarios, i.e., GW values are always
between PURE and EKF. The only exception is the number
of SLA violations in the Square scenario.

733



When analyzing percental changes for a metric, we pro-
vide the change of EKF compared to GW, followed by the
change of EKF compared to PURE in parentheses. For in-
stance, a reduction of scaling events of 80.1% (86.1%) de-
notes that EKF provides a 80.1% reduction of events com-
pared to GW, and a 86.1% reduction compared to PURE.

In all three scenarios, the total VM time is the highest for
EKF, and the lowest for PURE. The effect is strongest in the
Lab scenario, where the increase is 14.1% (22.2%), followed
by Pyramid, where the increase is 6.0% (11.3%). The lowest
increase, 2.2% (7.0%), is seen for Square. This indicates
that abrupt, step-wise changes, followed by constant load, as
present in Pyramid and even more extremely in Square, work
in favor of EKF, while lower, constant changes in workload
increase the additional VM time consumed by EKF. In total,
EKF causes an increased VM time of 7.8% (13.9%).

The amount of scaling events is drastically lower for EKF
in all scenarios. For Pyramid, EKF reduces scaling events by
80.1% (86.1%). For Square, the reduction is 90.8% (91.3%),
and for Lab it is 81.0% (87.1%). Again, Square causes EKF
to have the strongest effect, however, also the lowest change
of 80.1% for Pyramid is drastic. In total, EKF causes a
decrease of scaling events by 84.0% (87.9%).

The image and query processing times are also lowered
by EKF, with a higher impact seen for image processing
times. The following figures describe the processing times of
all operations, i.e., image processing and state queries. For
Pyramid, the decrease of processing time is 28.6% (44.5%).
For Square, the decrease is 53.9% (60.9%). For Lab, it is
40.7% (46.7%). Therefore, in the case of processing times,
the effect of rapid changes does not seem to have an impact
comparable with the previously discussed metrics. In total,
operation time is decreased by 43.7% (52.4%).

Finally, we inspect the impact of EKF on the amount of
SLA violations. The reduction caused by EKF for Pyramid
is 8.9% (12.5%), the reduction for Square is 25.5% (24.7%),
and for Lab, it is 4.8% (8.7%). The total reduction of vio-
lations is 13.2% (15.2%). Here, again, the highest reduction
is seen for Square, indicating an impact of rapid changes on
the reduction of SLA violations by EKF.

4.3 Cost Analysis and Further Discussion
In the results presented above, we show that using EKF

reduces three metrics (scaling events, processing time, and
SLA violations), but increases the total VM time consumed.
While the reductions provided are substantial, especially
with regard to the processing times and the amount of scal-
ing events, the increase of VM time implies a trade-off be-
tween increased VM time on the one hand, and a reduction
of the remaining metrics on the other hand.

Cloud providers currently do not charge for spin-up and
spin-down of machines. Therefore, the scaling events can-
not be assumed to cause direct cost but nevertheless lead to
higher processing times. In fact, increased processing time
usually implies increased cost, either by reducing overall rev-
enue, or by incurring SLA violation penalties.

We recall the total increase of 7.8% of VM time, and the
reduction of SLA violations by 13.2%, compared to GW.
We assume cost of cv per VM hour, and cost of cs per SLA
violation, and formulate the following inequations:

1.078 cv < 1.132 cs (20)

stating that the cost caused by additional VM time must be
lower than the cost saved by reducing SLA violations.

From this, we can deduce:

cv < 1.05 cs (21)

denoting that the break-even point for EKF is when VM
hours are less expensive than SLA violations, with an ad-
ditional margin of 5%. At the time of writing, the Google
Cloud Platform price for one core hour (Frankfurt) is $0.0612.
Assuming this price, EKF is profitable if the SLA violation
penalty is more than $0.059 per violating image or query.

Alternatively, we calculate the break-even point compar-
ing VM hours to operation processing times. We recall the
reduction of processing time by 43.7%, compared to GW.
This results in an increase of 1

1−0.437
= 1.776, i.e., by 77.6%

of processed operations. Again assuming cost of cv per VM
hour, and revenue of rp per processed operation, we formu-
late the following inequation:

1.078 cv < 1.776 rp (22)

cv < 1.6475 rp (23)

denoting the break-even point for EKF compared to GW.
We see that EKF reduces cost if the cost for one VM hour
is less than the revenue per operation by a factor of 1.6475.
Assuming again $0.0612 per VM hour, EKF is profitable if
the revenue per processed element is higher than $0.038.

Based on our experiments, we have shown realistic break-
even points for EKF compared to GW, providing a cost-
efficient operating range with regard to VM hour cost, SLA
violation penalties, and operation processing revenue. The
currently used workload can be extended by more complex
queries and workload types, requiring additional metrics to
be added to the system state described in Section 3.3.

EKF-based filtering of various data sources, such as disk
utilization and service execution times [2], network traf-
fic [26], or workload [32], has been demonstrated success-
fully, indicating applicability in the context of DSP. To add
further metrics, any numerical data (as opposed to ordinal
or nominal data) can be used, as long as it can be linearized
point-wise [28]. Extending the state model includes the ex-
tension of the xt vector, which in turn extends the remaining
vectors (x̂t, x̂

∗
t , etc.). In addition, the state transition func-

tion f must be adapted according to the system behavior.
If a query depends on data not stemming from within the
system, but provided as input (i.e., additional data sources),
the system input vector ut must be expanded accordingly.

5. RELATED WORK
A number of approaches using machine learning to main-

tain elasticity have already been presented. For instance,
Ortiz et al. [39] present PerfEnforce, using online learning
to provide proactive scaling decisions for a cluster of VMs.
Das et al. [8] discuss ElasTraS, allowing database systems
within cloud platforms to perform multi-tenant scaling op-
erations. An important consideration for elastic systems is
the scaling overhead, which we aim to minimize. Its impact
on cost has been studied by Corradi et al. [7] (in the context
of cloud data centers) and by Mao et al. [35] (in the context
of auto-scaling in cloud workflows). The common result of
these two studies is that indeed, such overhead has signif-
icant impact and should be kept to a minimum. In other
literature, the focus is put on overhead caused not by the

734



scaling itself, but by the decision-making. Computational
effort required to solve optimization problems can become
quite high [10, 45], especially when using techniques such as
Mixed-Integer Linear Programming (MILP) [34].

The aforementioned approaches do not directly address
DSP, but rather elastic systems in general. However, DSP
system exhibit very specific requirements, such as self-tuning,
self-stabilization and self-healing [12]. Therefore, building
on this research, but also considering the specific require-
ments of DSP systems, we focus on the state of the art of
scaling in DSP systems. Mencagli et al. [37] use the Model-
based Predictive Control (MPC) technique to create a trade-
off between reconfiguration stability and amplitude. While
the context (DSPs) is the same, and the aim (reduction of
reconfiguration overhead) is similar to ours (reduction of the
amount of scaling operations), the authors focus on the use
of a distributed and cooperative approach, while we focus
on the usage of multiple data sources and reduction of noise.

Floratou et al. [12] propose Dhalion, a self-healing and
self-regulating extension for streaming systems, implemented
on top of Twitter Heron. In this framework, metrics are used
to detect symptoms of declining system health. Dhalion
uses diagnosers to determine possible reasons (diagnoses)
for such decline, and invokes resolvers to attempt to bring
the system back to health. Self-monitoring is realized by
checking whether actions taken have indeed resolved a symp-
tom, and a learning mechanism blacklists unsuccessful reso-
lutions. The EKF-based filtering presented in the paper at
hand can be used in combination with Dhalion.

The usage of input data rate for scaling decisions has re-
peatedly been considered in literature [20, 31, 46], as was
using threshold-based systems to deduce concrete scaling de-
cisions [6, 21]. All of those approaches, however, suffer from
the overhead problem described in Section 1. Some research
has been conducted specifically to tackle this problem of
overhead due to volatile input. A general recommendation
is the usage of low-pass filters [7]. Another example of linear
filters is found in the work by Gong et al. [14], where scaling
decisions are based on a Fast Fourier Transform (FFT) and
pattern recognition. In contrast to the work at hand, Gong
et al. do not include extrinsic (environment) metrics, such
as the input data rate. Instead, only hysteresis is used to
perform smoothing of metrics. The filtering presented in our
work can therefore be used as a stage prior to the scaling
mechanism presented by Gong et al.

In our work, we use time series analysis, also used for scal-
ing in other approaches. For instance, this is achieved by cre-
ating an auto-scaling algorithm using pattern matching [5],
or using wavelet analysis [38]. This is complimented by ei-
ther using ANN models for proactive and predictive analy-
sis [24, 38], or reinforcement learning [11]. A combination
of predictive and reactive approaches has been used in [13].
Predictive elements are used for long-term time scales, while
reactive provisioning handles fine-grained, short-term peaks.
However, none of these approaches use extrinsic metrics as
a data source for reaching scaling decisions.

EKF-based processing is widely used for state estimation
in other fields. In the context of autonomic computing,
Barna et al. [2] estimate metrics such as service times, disk
utilization, and CPU usage using EKF. Jain et al. [26] use
EKF to process a noisy data stream of HTTP request num-
bers. In the context of enterprise computing systems, Kusic
et al. [32] use EKF for estimating system load. Our ap-

proach builds on the technique of EKF-based time series
processing, and shows its applicability in DSP. To the best
of our knowledge, apart from our own preliminary work [3],
no approaches use such methods in the context of DSP.

6. CONCLUSION AND FUTURE WORK
In this work, we propose EKF-based filtering for scaling

in DSP systems, to reduce the amount of scaling operations
and cost caused by SLA violations.

We present a model in which a time series of measure-
ments of system state is filtered using EKF, and provide
details to the application of EKF. We create a system capa-
ble of unifying intrinsic measurements (e.g., CPU and mem-
ory utilization) with extrinsic measurements (e.g., incoming
data rate). The resulting filter quickly reacts to changes in
the environment, while minimizing sensitivity to both pro-
cess and measurement noise. We utilize these filtered values
to reach scaling decisions.

We evaluate our work using a real-world dataset and work-
load to run experiments. While the VM time increases by
up to 13.9%, we see a reduction of scaling events by up to
87.9%, a reduction of processing time by up to 52.4%, and
a decrease in SLA violations by up to 15.2%.

In our evaluation, we consider CPU load and memory
utilization as intrinsic metrics. While these popular met-
rics are useful scaling indicators, and prove effective in our
evaluation, certain applications might, for instance, primar-
ily entail high network utilization or disk usage. In such
scenarios, solely considering CPU and memory utilization
is not sufficient. Related work shows the applicability of
EKF-based processing for other types of metrics in vari-
ous fields [2, 26, 32] and therefore indicates applicability in
the context of DSP. Naturally, further work is required to
empirically demonstrate EKF-based filtering in DSP with
additional metrics.

Another aspect worth investigating is topology-wide ap-
plication. Currently, our approach considers one individual
operator at a time. While it can be applied to all operators
of a DSP topology, each operator performs scaling decisions
on its own in a non-cooperative way. In future work, we
will extend our approach to take into account system-wide
behavior such as ripple effects and backpressure.

The image processing workload used for our evaluation
represents a widely used scenario for stream processing [47].
While its wide usage makes it a good candidate for an initial
evaluation, a wider evaluation would be required to deter-
mine specific challenges and possible approaches in other
use cases. The main challenges of other scenarios are more
complex queries and other workload characteristics, such as
high I/O or network load. We discuss in Section 4.3 how our
approach can be extended to such scenarios and queries.

7. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

constructive reviews of the paper. Furthermore, we would
like to thank Pablo Hofbauer of the Institute of Molecular
Biotechnology of the Austrian Academy of Sciences (IMBA)
for kindly providing the dataset used in the evaluation, and
for continuously offering insights into research techniques in
biomedical engineering. This work is partially funded by
COMET K1, FFG – Austrian Research Promotion Agency,
within the Austrian Center for Digital Production.

735



8. REFERENCES
[1] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and

P. Merle. Elasticity in cloud computing: State of the
art and research challenges. 11(2):430–447, 2018.

[2] C. Barna, M. Litoiu, and H. Ghanbari. Autonomic
load-testing framework. In ACM International
Conference on Autonomic Computing, pages 91–100.
ACM, 2011.

[3] M. Borkowski, C. Hochreiner, and S. Schulte.
Moderated resource elasticity for stream processing
applications. In Euro-Par 2017: Parallel Processing
Workshops, pages 5–16. Springer, 2017.

[4] R. Buyya, R. Ranjan, and R. Calheiros. Intercloud:
Utility-oriented federation of cloud computing
environments for scaling of application services.
Algorithms and architectures for parallel processing,
pages 13–31, 2010.

[5] E. Caron, F. Desprez, and A. Muresan. Forecasting
for grid and cloud computing on-demand resources
based on pattern matching. In International
Conference on Cloud Computing Technologies and
Science (CloudCom), pages 456–463. IEEE, 2010.

[6] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki,
and P. Pietzuch. Integrating scale out and fault
tolerance in stream processing using operator state
management. In International Conference on
Management of Data (SIGMOD/PODS), pages
725–736. ACM, 2013.

[7] A. Corradi, M. Fanelli, and L. Foschini. Vm
consolidation: A real case based on openstack cloud.
Future Generation Computer Systems, 32:118–127,
2014.

[8] S. Das, D. Agrawal, and A. El Abbadi. ElasTraS: An
elastic, scalable, and self-managing transactional
database for the cloud. ACM Transactions on
Database Systems, 38(1):5, 2013.

[9] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.
Albatross: Lightweight elasticity in shared storage
databases for the cloud using live data migration.
PVLDB, 4(8):494–505, 2011.

[10] C. Delimitrou and C. Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management.
In ACM SIGPLAN Notices, volume 49, pages
127–144. ACM, 2014.

[11] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant,
N. Rivierre, and I. Truck. Using reinforcement
learning for autonomic resource allocation in clouds:
towards a fully automated workflow. In International
Conference on Autonomic and Autonomous Systems
(ICAS), pages 67–74, 2011.

[12] A. Floratou, A. Agrawal, B. Graham, S. Rao, and
K. Ramasamy. Dhalion: Self-regulating stream
processing in heron. PVLDB, 10(12):1825–1836, 2017.

[13] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and
M. Marwah. Hybrid resource provisioning for
minimizing data center SLA violations and power
consumption. Sustainable Computing: Informatics and
Systems, 2(2):91–104, 2012.

[14] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive
elastic resource scaling for cloud systems. In
International Conference on Network and Service
Management (CNSM), pages 9–16. IEEE, 2010.

[15] G. C. Goodwin, S. F. Graebe, and M. E. Salgado.
Control system design. Prentice-Hall, 2001.

[16] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez,
C. Soriente, and P. Valduriez. Streamcloud: An elastic
and scalable data streaming system. Transactions on
Parallel and Distributed Systems, 23(12):2351–2365,
2012.

[17] R. Han, L. Guo, M. M. Ghanem, and Y. Guo.
Lightweight resource scaling for cloud applications. In
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pages
644–651. IEEE/ACM, 2012.

[18] E. Hannan. Multiple Time Series. A Wiley publication
in applied statistics. Wiley, 1970.

[19] T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak,
and C. Fetzer. Online parameter optimization for
elastic data stream processing. In Symposium on
Cloud Computing (SoCC), pages 276–287. ACM, 2015.

[20] C. Hochreiner, S. Schulte, S. Dustdar, and F. Lecue.
Elastic stream processing for distributed
environments. Internet Computing, 19(6):54–59, 2015.

[21] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar.
Elastic stream processing for the internet of things. In
IEEE International Conference on Cloud Computing
(CLOUD), pages 100–107. IEEE, 2016.

[22] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar.
Cost-efficient enactment of stream processing
topologies. PeerJ Computer Science, 3:e141, 2017.

[23] P. Hofbauer, J. P. Jung, T. J. McArdle, and B. M.
Ogle. Simple monolayer differentiation of murine
cardiomyocytes via nutrient deprivation-mediated
activation of β-catenin. Stem Cell Reviews and
Reports, 12(6):731–743, 2016.

[24] S. Islam, J. Keung, K. Lee, and A. Liu. Empirical
prediction models for adaptive resource provisioning
in the cloud. Future Generation Computer Systems,
28(1):155–162, 2012.

[25] S. Islam, K. Lee, A. Fekete, and A. Liu. How a
consumer can measure elasticity for cloud platforms.
In International Conference on Performance
Engineering (ICPE), pages 85–96. ACM/SPEC, 2012.

[26] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive
stream resource management using kalman filters. In
ACM International Conference on Management of
Database (SIGMOD), pages 11–22. ACM, 2004.

[27] A. H. Jazwinski. Stochastic processes and filtering
theory. Courier Corporation, 2007.

[28] S. J. Julier, J. K. Uhlmann, and H. F.
Durrant-Whyte. A new approach for filtering
nonlinear systems. In American Control Conference
(ACC), volume 3, pages 1628–1632 vol.3, June 1995.

[29] R. E. Kalman and R. S. Bucy. New results in linear
filtering and prediction theory. Journal of Basic
Engineering, 83(3):95–108, 1961.

[30] A. Kejariwal and J. Allspaw. The Art of Capacity
Planning: Scaling Web Resources in the Cloud.
O’Reilly Media, Inc., 2017.

[31] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload
characterization and prediction in the cloud: A
multiple time series approach. In Network Operations
and Management Symposium (NOMS), pages
1287–1294. IEEE, 2012.

736



[32] D. Kusic and N. Kandasamy. Risk-aware limited
lookahead control for dynamic resource provisioning in
enterprise computing systems. Cluster Computing,
10(4):395–408, Dec 2007.

[33] T. Lindeberg. Scale-space for discrete signals. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12(3):234–254, 1990.

[34] K. G. S. Madsen, Y. Zhou, and J. Cao. Integrative
dynamic reconfiguration in a parallel stream
processing engine. In 33rd International Conference on
Data Engineering (ICDE), pages 227–230. IEEE, 2017.

[35] M. Mao and M. Humphrey. Auto-scaling to minimize
cost and meet application deadlines in cloud
workflows. In International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC), pages 1–12. IEEE, 2011.

[36] M. Maurer, I. Brandic, and R. Sakellariou.
Self-adaptive and resource-efficient sla enactment for
cloud computing infrastructures. In IEEE
International Conference on Cloud Computing
(CLOUD), pages 368–375, 2012.

[37] G. Mencagli, M. Vanneschi, and E. Vespa. A
cooperative predictive control approach to improve
the reconfiguration stability of adaptive distributed
parallel applications. Transactions on Autonomous
and Adaptive Systems, 9(1):2, 2014.

[38] C. Napoli, G. Pappalardo, and E. Tramontana. A
hybrid neuro–wavelet predictor for qos control and
stability. In Congress of the Italian Association for
Artificial Intelligence, pages 527–538. Springer, 2013.

[39] J. Ortiz, B. Lee, M. Balazinska, and J. L. Hellerstein.
Perfenforce: a dynamic scaling engine for analytics
with performance guarantees. arXiv preprint
arXiv:1605.09753, 2016.

[40] W. J. Reichmann. Use and abuse of statistics. Penguin
books, 1964.

[41] I. Selesnick. Total variation denoising (an mm
algorithm). NYU Polytechnic School of Engineering
Lecture Notes, 2012.

[42] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes.
Cloudscale: elastic resource scaling for multi-tenant
cloud systems. In Symposium on Cloud Computing
(SoCC), pages 5–18. ACM, 2011.

[43] M. Sigwart, C. Hochreiner, M. Borkowski, and
S. Schulte. Fakeload: An open-source load generator.
Technical Report TUV-1942-2018-01, Distributed
Systems Group, Technische Universität Wien, 2018.

[44] M. Valipour, M. E. Banihabib, and S. M. R.
Behbahani. Comparison of the arma, arima, and the
autoregressive artificial neural network models in
forecasting the monthly inflow of dez dam reservoir.
Journal of Hydrology, 476:433–441, 2013.

[45] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and
R. Bianchini. Dejavu: accelerating resource allocation
in virtualized environments. In SIGARCH Computer
Architecture News, volume 40, pages 423–436. ACM,
2012.

[46] J. Xu, Z. Chen, J. Tang, and S. Su. T-storm:
traffic-aware online scheduling in storm. In IEEE
International Conference on Distributed Computing
Systems (ICDCS), pages 535–544. IEEE, 2014.

[47] M. Zaharia, R. S. Xin, P. Wendell, T. Das,
M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al. Apache spark:
a unified engine for big data processing.
Communications of the ACM, 59(11):56–65, 2016.

[48] A. I. Zayed. Handbook of function and generalized
function transformations. CRC press, 1996.

[49] Q. Zhang, L. Cheng, and R. Boutaba. Cloud
computing: state-of-the-art and research challenges.
Journal of Internet Services and Applications,
1(1):7–18, 2010.

737


	Introduction
	Approach
	Control Loop
	Filtering Model
	Extended Kalman Filter
	Bootstrapping
	Parameter and Complexity Analysis

	Evaluation
	Experimental Testbed
	Workload
	Evaluation Methodology

	Experiments and Results
	Exemplary Runs
	Aggregate Results
	Cost Analysis and Further Discussion

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

