
Data Prefetching in Smart Systems

Sabine Weninger and Michael Borkowski
Distributed Systems Group

TU Wien
Vienna, Austria

{s.weninger, m.borkowski}@infosys.tuwien.ac.at

Abstract—In smart system scenarios, such as the Internet of
Things (IoT), managing data traffic remains a crucial challenge,
with high data volumes and low data transmission rates sig-
nificantly hindering user experience. In this light, a promising
technique is data prefetching, which involves the fetching of data
on specific devices before it is required by the user, in order to
reduce the response time and improve the application’s user-
perceived Quality of Experience (QoE).

In this paper, we present an implementation of such data
prefetching in an IoT scenario. We evaluate our solution using
a real-world testbed consisting of Raspberry Pi computers and
an Android smartphone. Our results show that data prefetching
is a viable method for reducing response time in IoT scenarios,
and subsequently, improving the user-perceived QoE.

Index Terms—prefetching, smart systems, IoT

I. INTRODUCTION AND MOTIVATION

Smart systems, i.e., systems displaying “smart behavior”,

consist of sensors, which detect changes in the environment,

and actuators, which adapt the system to these environmental

changes [1, 7]. Examples for such smart systems include

smart cities and smart factories [16]. For instance, the public

transport infrastructure in a city can be equipped with sensors,

collecting data such as the current position of trams, buses,

and subway trains. A user traveling through the city is then

able to gather this live information on a mobile phone, take

into account possible delays, and select the ideal route. Other

scenarios include parking sensors installed in a city, where

parking spots are made visible for the driver of a car, reducing

the time required for finding a parking spot, which in turn leads

to reduced CO2 emissions and less traffic congestion [16].

Internet of Things (IoT) devices can act as sensors and

actuators, and can be used to implement such a smart environ-

ment [2, 7]. Technologies used for IoT communication include

Radio Frequency Identification (RFID) [6, 7] and Wireless

Sensor Networks (WSN) [15].

An important factor in the advancement of smart systems

is mobile computing. Smartphones are now omnipresent and

mobile traffic has grown 18-fold over the past 5 years [5].

This trend will continue, with estimations predicting a 7-fold

increase of mobile traffic and a 3-fold increase of connection

speeds between 2016 and 2021 [5]. Mobile computing pro-

vides the technology necessary for connecting devices over

large distances, creating global communication networks [7].

Having smart technology incorporated into everyday objects

and connecting them through the Internet poses several chal-

lenges, a key one being the location of storing and processing

data. The current paradigm shift towards cloud computing [10]

provides a possible solution to this challenge. For instance, the

aforementioned IoT sensors can send their data to a cloud-

based system, to which users connect to query the data.

However, this poses the disadvantage of large amounts of

data traffic, including both upstream communication from the

sensors to the cloud, and downstream communication back

to the mobile device, for instance, the user’s car navigation

system.

We investigate a solution to this problem, which works

by prefetching data that the user will need, to a location

which the user is going to pass in the foreseeable future.

Prefetching is the process of transferring data ahead of the

time of requirement, in order to have the data available and

ready to send upon the user’s request [4, 8]. In the presented

context of smart cities, live public transport data is sent to

the IoT devices along the user’s path of navigation. Once the

user is within range of these IoT devices, the data can be

transferred directly, avoiding time-consuming request-response

communication between the user’s device and a central server.

This helps to improve the Quality of Experience (QoE) [4, 9].

This paper presents a demonstration of a data prefetching

solution in an IoT environment. Existing literature already

includes various concrete algorithms for finding decisions on

when and where to prefetch which data items, and these

algorithms cover many different use cases [4, 8, 12]. We

therefore do not discuss another such algorithm. Instead, we

provide a reference solution for data prefetching on IoT and

address possible issues that can arise. The solution is designed

in a way that enables its application to various use cases,

including smart cities, smart factories, and mobility scenarios

in general.

The remainder of this paper is structured as follows: In

Section II, we provide an overview of the system architecture

of our approach. In Section III, we discuss our implementation,

and evaluate its functionality. Finally, in Section IV, we

conclude our work, discuss limitations, and provide additional

outlook and discussion.

II. OVERVIEW

In our scenario, a user is moving along a given route and

using a mobile device to access certain data, e.g., information

about the route of his trip or the amount of traffic. Along

the route, IoT devices are installed at various geographic (lati-

tude/longitude) locations. These IoT devices can be sensors

204

2018 IEEE 22nd International Enterprise Distributed Object Computing Workshop

2325-6605/18/$31.00 ©2018 IEEE
DOI 10.1109/EDOCW.2018.00037

Fig. 1. Architecture of our prefetching solution

such as traffic or parking sensors, but can also be small

computing devices, comparable to Raspberry Pi computers.

The user’s mobile device is connecting to various IoT devices

along its route. Furthermore, the mobile device is aware of

its future route, i.e., the geographic target which the user

is approaching. This can stem from sources like a turn-

by-turn navigation system, or by employing user mobility

prediction [11]. This implies that it is possible to determine

the IoT device to which the mobile device will connect next.

The IoT devices communicate with each other on a peer-to-

peer basis, i.e., a central controller is not required in general.

Furthermore, not all IoT devices hold all IoT data. Instead,

each IoT device is responsible for a separate subset of data,

but can query other IoT devices if additional data is required.

Therefore, the IoT device to which the mobile device is

currently connected can fetch data required by the mobile

device from other (neighboring) IoT devices. An overview of

the overall architecture of our solution is shown in Figure 1.

We demonstrate our approach by providing a system for

querying public transport traffic information (e.g., departure

time of next bus) from a major public transport network

operator in Vienna, Wiener Linien. In our scenario, the user

moves through a landscape of IoT devices, and can submit

queries for this data. Using prefetching, our solution ensures

that data required in the foreseeable future, i.e., data about

route parts which will be required soon according to the

planned transit path, are prefetched by the IoT devices along

the path.

In the following, we describe the various components of our

solution. Note that only the mobile device application itself

is executed on the mobile device. All other components are

running on the IoT devices, which reduces workload for the

mobile device, avoiding severe reduction of battery life.

A. Mobile Device Application

The application running on the mobile device is responsible

for providing the user with required information. In our case,

this “payload” is live traffic data from the Wiener Linien

network. The mobile device is connected to one given IoT

device at a time, and can request information about live

public transport data. Upon user request, the mobile device

application queries the currently connected IoT device for this

information, which may either directly respond to the query (if

the data is present on the given IoT device), or forward

the request to another IoT device (e.g., if data concerning a

platform is queried for which the current IoT device does not

have any information).

B. IoT Device Application

On the IoT devices themselves, an application consisting of

multiple services is deployed.

Data Prediction Service This service is responsible for pre-

dicting which data is most likely to be required by the

user. As input, this service takes data about the current

location and planned destination of the user together with

the current speed, and it returns a list of possibly relevant

data items.

User Mobility Prediction Service The user mobility predic-

tion service forecasts the geographic path which the user

is expected to take. For each IoT device, provided with

the same information as the data prediction service, this

method returns the point in time at which the user will

come within range, and how long the user is expected to

stay in range.

Time Prediction Service Finally, this service provides infor-

mation about when to start prefetching data, and which

data items should be prefetched by which IoT device.

This service uses the output of the preceding services to

determine how much data can be transferred to the user

during the time of connectivity.

In our current implementation, these three services are

realized using relatively simple methods. We use linear ex-

trapolation to determine the user’s future path and speed, and

simply use the size of data items to estimate which data items

to transfer. As we will show in Section III, we only use a

linear sequence of IoT devices, which significantly simplifies

the functionality of these services.

In a real-world IoT scenario, more sophisticated techniques

can be used for these predictions. Our modular solution allows

replacing these implementations with suitable techniques. For

instance, our earlier work proposes using geographic coordi-

nates together with Kalman filters to create a more suitable

approximation as a means of smoothing signals [3].

III. IMPLEMENTATION AND EVALUATION

In this section, we describe the implementation of our

solution. Furthermore, we evaluate the solution in a real-world

testbed.

A. Implementation

In order to evaluate our approach, we use a testbed con-

sisting of five Raspberry Pi computers representing the IoT

devices. These IoT devices have IDs numbered 1 through 5,

and are placed on two separate floors of the institute building,

separated by distances between 10 and 30 m. Naturally, in a

real IoT setting, these devices are further apart, and are only

205

TABLE I
TEST RUNS

Test Start Device Link Prefetching
Run Device Direction Speed Enabled

1 1 ascending 1 kB/s yes
2 2 ascending 1 kB/s yes
3 1 ascending 1 kB/s yes
4 5 descending 1 kB/s yes

5 1 ascending 1 kB/s no
6 2 ascending 1 kB/s no
7 1 ascending 1 kB/s no
8 5 descending 1 kB/s no

9 1 ascending 5 kB/s yes
10 2 ascending 5 kB/s yes
11 1 ascending 5 kB/s yes
12 5 descending 5 kB/s yes

13 1 ascending 5 kB/s no
14 2 ascending 5 kB/s no
15 1 ascending 5 kB/s no
16 5 descending 5 kB/s no

0

1000

2000

3000

4000

5000

Prefetching No Prefetching

Fig. 2. Average response time, link speed of 1 kB/s (error bars denote σ)

0

200

400

600

800

1000

Prefetching No Prefetching

Fig. 3. Average response time, link speed of 5 kB/s (error bars denote σ)

connected by a slow mobile connection. We therefore simulate

this slow mobile connection between the IoT devices using the

SpiceJ library [14].

While our approach does not depend on a given communica-

tion method or protocol, and in theory, any kind of connectivity

can be used, we use Wi-Fi in our scenario. Each IoT device

creates a Wi-Fi network, to which the mobile device can

connect. In our test setup, the mobile device travels along the

IoT devices either in ascending order, i.e., from the lowest to

the highest IoT device ID, or in descending order, depending

on the test run configuration, as discussed in Section III-B. We

perform some runs in descending order to achieve a reference

on whether the ordering influences the results. Additionally,

the mobile device queries the IoT devices for live traffic data

provided by the Wiener Linien API1. This API represents

platforms using identifiers, which are called RBL numbers2,

and we use these RBL numbers to distinguish platforms. Each

RBL number is assigned a geographic position.

In order to create a realistic setup, we inhibit the available

data of each IoT device to only read certain subsets of

information. To this end, we divide the city area of Vienna

into six rectangles based on geographic coordinates, and based

on its location, each IoT device is assigned one of these areas.

If a user requests information about RBL numbers (platforms)

within a different area, the IoT device will ask the neighboring

devices for this information. Otherwise, if all IoT devices had

access to all data, prefetching would be redundant. To this

end, the queries used in this experiment are selected in a way

that ensures that multiple IoT devices must be considered to

respond to the query (i.e., data stemming not only from the

currently connected IoT device is requested).

In our testbed, the mobile device is implemented using an

Android smartphone, and the software running on this device

is an Android app written specifically for this evaluation.

The mobile device application allows the user to query the

aforementioned Wiener Linien live data. The IoT devices are

running a Java application consisting of the three services

described in Section II. The mobile devices are configured

to connect to the Wi-Fi network with the strongest signal, and

perform roaming upon insufficient network quality with in-

creased roaming sensibility, enabling a smooth hand-over and

avoiding “blind spots” where no Wi-Fi network is available.

B. Evaluation

In order to show that the proposed prefetching reduces

the overall time until a data item becomes available, we

perform 16 test runs with various configurations, and record

the resulting response time. Out of these 16 test runs, 8 are

performed with prefetching, and 8 without. Furthermore, 12

test runs are performed in ascending order, and 4 test runs are

performed in descending order. In order to analyze the impact

of connection speed between the mobile device and the IoT

devices, we use two different link speeds (1 kB/s and 5 kB/s).

Table I gives an overview of the test run configurations.

Using a link speed of 1 kB/s and no prefetching, it takes

an average of 3091 ms (σ = 1958) per data item to receive a

response. With prefetching enabled, this number is reduced

to only 180 ms (σ = 314). Similarly, for a link speed

of 5 kB/s and no prefetching, an average response time of

1API endpoint: http://www.wienerlinien.at/ogd realtime/monitor.
2RBL stems from the German word Rechnergesteuertes Betriebs-

Leitsystem (computer-aided operation management system), an ICT system
for management of public transport fleets.

206

689 ms (σ = 333) is achieved. With prefetching enabled,

the average response time is 26 ms (σ = 18). Therefore,

prefetching enables a reduction in response time per data item

by 2911 ms and 663 ms for link speeds of 1 kB/s and 5 kB/s,

respectively. A Student’s t-test shows the significance of both

reductions, yielding p-values of < 0.001 for both link speeds.

The order of evaluation (ascending or descending) did not

significantly influence the results.

IV. DISCUSSION

This work shows that data prefetching significantly reduces

response time and therefore can lead to an improved user-

perceived QoE. We have implemented a relatively simple

solution, with a sequential alignment of IoT devices, which

naturally does not correspond to the network topology of

a large-scale IoT scenario. Furthermore, the computational

capability of actual IoT devices may vary. In our scenario,

we use Raspberry Pi computers, which, compared to battery-

operated low-power sensors, are relatively powerful. Addi-

tional optimization and reduction of requirements for (at least

some) IoT devices may be necessary to deploy our solution

in a large-scale IoT scenario.

Furthermore, another limitation is that while fetching data

items from neighbors, IoT devices currently wait for the

complete response before forwarding these data items to the

mobile device. This could be performed in a stream-based,

byte-by-byte manner, which would further accelerate data

transmission. Another possibility for improvement lies within

the three services in the software running on the IoT devices

(data prediction service, user mobility prediction service, and

time prediction service). These services were implemented

using simple algorithms which were suitable for our evaluation

testbed, but better techniques are needed for the prediction of

these variables in a real-world scenario. Finally, the network

topology of the IoT devices was not covered in our work, and

instead of a pure peer-to-peer layout, Fog computing [13] can

be used for coordination between IoT devices.

Nevertheless, we have shown the feasibility of prefetching

in a scenario with a mobile device fetching data from IoT

devices. Our results show that prefetching has the potential to

significantly reduce the response time, improving user experi-

ence. We have also provided a reference solution, highlighting

important components and subsystems in our implementation.

ACKNOWLEDGMENT

Research presented within this work is partially funded by

COMET K1, FFG - Austrian Research Promotion Agency,

within the Austrian Center for Digital Production.

REFERENCES

[1] G. Akhras. “Smart materials and smart systems for

the future”. In: Canadian Military Journal 1.3 (2000),

pp. 25–31.

[2] L. Atzori, A. Iera, and G. Morabito. “The internet of

things: A survey”. In: Computer networks 54.15 (2010),

pp. 2787–2805.

[3] M. Borkowski, C. Hochreiner, and S. Schulte. “Mod-

erated Resource Elasticity for Stream Processing Ap-

plications”. In: Euro-Par 2017: Parallel Processing
Workshops. 2017, pp. 5–16.

[4] M. Borkowski, O. Skarlat, S. Schulte, and S. Dustdar.

“Prediction-Based Prefetch Scheduling in Mobile Ser-

vice Applications”. In: IEEE International Conference
on Mobile Services (MS). IEEE. 2016, pp. 41–48.

[5] Cisco. Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2016-2021. 2017.

[6] K. Finkenzeller. RFID handbook: fundamentals and
applications in contactless smart cards, radio frequency
identification and near-field communication. John Wiley

& Sons, 2010.

[7] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.

“Internet of Things (IoT): A vision, architectural el-

ements, and future directions”. In: Future generation
computer systems 29.7 (2013), pp. 1645–1660.

[8] W. Hummer, S. Schulte, P. Hoenisch, and S. Dustdar.

“Context-aware data prefetching in mobile service en-

vironments”. In: IEEE International Conference on Big
Data and Cloud Computing (BdCloud). IEEE. 2014,

pp. 214–221.

[9] S. Ickin, K. Wac, M. Fiedler, L. Janowski, J.-H. Hong,

and A. K. Dey. “Factors Influencing Quality of Expe-

rience of Commonly Used Mobile Applications”. In:

IEEE Communications Magazine 50 (4 2012), pp. 48–

56.

[10] P. Mell and T. Grance. “The NIST Definition of Cloud

Computing Recommendations of the National Institute

of Standards and Technology”. In: National Institute
of Standards and Technology, Information Technology
Laboratory 145 (2011), p. 7.

[11] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo.

“Mining user mobility features for next place prediction

in location-based services”. In: IEEE International Con-
ference on Data Mining (ICDM). IEEE. 2012, pp. 1038–

1043.

[12] V. A. Siris and D. Kalyvas. “Enhancing mobile data

offloading with mobility prediction and prefetching”. In:

ACM SIGMOBILE Mobile Computing and Communica-
tions Review 17.1 (2013), pp. 22–29.

[13] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and

P. Leitner. “Optimized IoT service placement in the

fog”. In: Service Oriented Computing and Applications
11.4 (2017), pp. 427–443.

[14] SpiceJ. https://github.com/michael- borkowski/spiceJ.

[Online; accessed 20-June-2018].

[15] S. Yinbiao, K. Lee, P. Lanctot, F. Jianbin, H. Hao,

B. Chow, and J. Desbenoit. “Internet of things: wireless

sensor networks”. In: White Paper, International Elec-
trotechnical Commission (2014).

[16] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and

M. Zorzi. “Internet of things for smart cities”. In: IEEE
Internet of Things journal 1.1 (2014), pp. 22–32.

207

