FAKULTAT
FUR INFORMATIK

Predictive Approaches for
Resource Provisioning in
Distributed Systems

Faculty of Informatics

DISSERTATION

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Michael Borkowski, BSc
Matrikelnummer 00925853

an der Fakultat fur Informatik

der Technischen Universitat Wien

Betreuung: Associate Prof. Dr.-Ing. Stefan Schulte

Diese Dissertation haben begutachtet:

Valeria Cardellini Stefan Tai

Wien, 1. Marz 2020

Michael Borkowski

Technische Universitat Wien
A-1040 Wien * Karlsplatz 13 = Tel. +43-1-58801-0 * www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Predictive Approaches for
Resource Provisioning in
Distributed Systems

Faculty of Informatics

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of
Doktor der Technischen Wissenschaften
by

Dipl.-Ing. Michael Borkowski, BSc
Registration Number 00925853

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dr.-Ing. Stefan Schulte

The dissertation has been reviewed by:

Valeria Cardellini Stefan Tai

Vienna, 15 March, 2020

Michael Borkowski

Technische Universitat Wien
A-1040 Wien * Karlsplatz 13 = Tel. +43-1-58801-0 * www.tuwien.ac.at

Erklarung zur
Verfassung der Arbeit

Michael Borkowski
Lilienthalplatz 7
38108 Braunschweig
Deutschland

Hiermit erkldre ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich
die Stellen der Arbeit — einschliefllich Tabellen, Karten und Abbildungen —, die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen
sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht
habe.

Braunschweig, 1. Méarz 2020

Michael Borkowski

Abstract

Modern distributed systems, such as cloud computing infrastructures or data
stream processing engines, perform resource provisioning tasks such as resource
allocation, task scheduling, or scaling. This decision-making substantially
influences the systems’ performance, and therefore, the manner of reaching
these decisions is crucial to the systems’ operation with regard to cost efficiency,
performance, reliability, and adherence to service level agreements.

Currently, many approaches to resource provisioning in distributed systems are
reactive, i.e., they measure the systems’ state, analyze it, and perform necessary
actions. The main downside of reactive approaches is that effectively, such
systems perform resource provisioning based only on past observations. In a
highly dynamic environment with rapidly changing demands for computational
resources, this can lead to delayed reactions, which increase cost, degrade
performance, and reduce reliability.

This thesis proposes the use of predictive technologies for performing resource
provisioning tasks in modern distributed systems. As a foundation, methods
stemming from research in the field of machine learning are used to improve target
metrics like system performance or operational cost. In contrast to traditional,
reactive approaches, the proposed methodology of predictive decision-making is
able to perform operational tasks ahead of time, such as scaling out in advance
for a predicted increase of demand.

We show how to use predictive methods in various domains of distributed
systems, namely cloud computing, business process management systems, data
stream processing, and blockchains. We propose approaches to solving challenges
in designing predictive methods, such as metric prediction, failure prediction, or
data filtering and estimation. We evaluate the impact of the proposed methods
on the system using various quantitative methods, including testbed evaluation
and simulation, as well as formal and qualitative analysis. Our results show
that employing predictive approaches in these domains of distributed systems
significantly improves performance attributes such as response time or adherence
to service level agreements.

vii

Kurzfassung

Verteilte Systeme, wie sie heutzutage in Bereichen wie Cloud Computing und Da-
ta Stream Processing verwendet werden, erfiillen Aufgaben wie Ressourcenzuwei-
sung, Aufgabenplanung und Skalierung. Die hierbei getroffenen Entscheidungen
beeinflussen mafigeblich die Systemleistung und sind dementsprechend entschei-
dend fiir die Betriebskosten, die Leistungsfahigkeit und die Ausfallsicherheit
eines Systems sowie dessen Einhaltung von Service Level Agreements.

Viele aktuelle Techniken zur Ressourcenzuweisung sind reaktiv, iiberwachen also
den Systemzustand und reagieren mit entsprechenden Mafinahmen auf dessen
Anderungen. Da solche Ansitze lediglich auf bereits vergangene Messungen
zuriickgreifen kénnen, kann dies in dynamischen Umgebungen zu mafigeblichen
Verzogerungen in der Reaktionszeit, verminderter Leistung, erhéhter Ausfall-
wahrscheinlichkeit und folglich zu erhéhten Kosten fiihren.

Diese Arbeit behandelt vorhersagebasierte Techniken zur Ressourcenzuweisung in
verteilten Systemen. Hierbei werden Methoden aus dem Gebiet des maschinellen
Lernens eingesetzt, um Zielvariablen wie Leistung oder Kosten zu verbessern.
Die in dieser Arbeit présentierten Ansétze ermdéglichen es, Mafinahmen zur
zeitgerechten Vorbereitung auf wahrscheinliche Zustandsanderungen zu setzen.
So kénnen etwa zusétzliche Ressourcen bereits aktiviert werden, bevor sich die
Systemlast erhoht.

Vorhersagebasierte Techniken werden in dieser Arbeit in verschiedenen Doméanen
eingesetzt, ndmlich Cloud Computing, Business Process Management, Data
Stream Processing und Blockchains. Konkrete Ansétze werden behandelt, wie
das Vorhersagen von Metriken und Fehlern, das Filtern von Daten sowie deren
Abschatzung. Die Auswirkungen auf das zugrundeliegende System werden expe-
rimentell mittels quantitativer Methoden sowie formal und qualitativ analysiert.
In den Ergebnissen zeigt sich, dass die Ansétze einen positiven Effekt auf die
Zielvariablen haben, wie etwa eine Senkung der Kosten, eine bessere Einhaltung
von Service Level Agreements oder eine Minderung von Antwortzeiten.

ix

Danksagung

Der Abschluss meines Doktoratsstudiums, welches in dieser Arbeit gipfelt, stellt
fir mich einen wichtigen personlichen Meilenstein dar. Ich méchte mich bei
meinen Eltern Irena und Tomasz sowie bei meiner Schwester Barbara bedanken.
Meine Familie hat mich wihrend meines gesamten Studiums unterstiitzt.

Auf universitarer Seite gebiihrt mein tiefster und aufrichtigster Dank und Respekt
meinem Doktorvater, Associate Prof. Dr.-Ing. Stefan Schulte — ein Doktorat
steht und fallt mit einer guten Beziehung zwischen Betreuer und Doktorand.
Ich kann mich besonders gliicklich schétzen, von ihm eine derart lehrreiche
Unterstiitzung in akademischen, professionellen und personlichkeitsbildenden
Belangen erhalten zu haben, und bin dankbar fiir alle Erfahrungen und Lernwerte,
die ich mitnehmen konnte. Univ.-Prof. Dr. Schahram Dustdar mochte ich fiir
die Moglichkeit herzlich danken, mein Doktorat an der DSG abzuschliefen.

Herzlichst bedanken méchte ich mich auch bei meinen Kollegen, insbesondere
Philipp, Christoph, Svetoslav, Olena und Matteo. Unsere gemeinsame Forschung,
Projektarbeit, konstruktive Diskussionen und eure Gesellschaft — sei es am In-
stitut, auf Dienstreisen oder privat im Downstairs — waren ein elementarer
Bestandteil meines Forschungsalltags und haben mich stets in meinem Tun mo-
tiviert. Meine Arbeit wéire auflerdem nicht dieselbe ohne die stetige kulinarische
Versorgung durch das Team der Gorilla Kitchen.

Gliicklicherweise konnte ich auch auflerhalb der TU Wien immer auf Unter-
stiitzung seitens meiner Freunde zdhlen. Besonders dankbar bin ich Manuela,
Barbara, Sophie und Simone, sowie Christian, Konrad und Marco. Thr habt
mich in guten wie in schlechten Zeiten immer unterstiitzt und ermutigt. Dank
Stefanie und Elisabeth fiel es mir schwer, im April 2019 Wien zu verlassen, dank
Max, Joonas und Marc sowie der Nordstadt-Gang Eli, Inki, Nele, Lena und Ivo
allerdings umso leichter, in der Lowenstadt Fufl zu fassen.

Schlussendlich méchte ich meine Anerkennung, meinen Respekt und meine
Dankbarkeit gegeniiber der gesamten akademischen Gesellschaft zum Ausdruck
bringen. Studenten, Doktoranden, wissenschaftliche Mitarbeiter, Professoren,
genauso wie Gutachter, Herausgeber von wissenschaftlichen Fachzeitschriften und
Organisatoren von Konferenzen erméglichen durch kontinuierliche, gewissenhafte,
harte [76, 251] und trotzdem oft zu wenig wertgeschétzte Forschungsarbeit
Fortschritte, welche unseren Horizont erweitern.

Xi

Acknowledgements

I am very grateful to Associate Prof. Dr. Valeria Cardellini of the University of
Rome Tor Vergata, as well as Prof. Dr.-Ing. Stefan Tai of TU Berlin for agreeing
to serve as reviewers for this thesis and providing me with very valuable input.

I would like to thank Christoph, Daniel, Jon, Oskar, and Taneli, who—despite
my Java background—welcomed me and let me become a member of Team
Python at heart. Thank you for the fruitful and interesting discussions, for the
funny remarks, calculations of Erdész numbers, linguistic discourses, delightful
lunch and coffee breaks, and for the overall pleasant working environment,
allowing me to have a good time at Bitpanda.

Additionally, my thanks go out to my friend Pablo Hofbauer of the Institute of
Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences (OAW)
for kindly providing the dataset used in the evaluation of Chapter 5, and for
continuously offering insights into research techniques in biomedical engineering.

Finally, I would like to thank the scientific community, including all authors
and co-authors, students, advisors, professors, editors, reviewers, grant sponsors,
chairs, as well everyone involved in organizing venues such as conferences and
workshops, for their efforts, criticism, ideas, input, and support. Research is
hard work [76, 251], often voluntary, unpaid and mostly underappreciated, even
though it results in a significant amount of progress in science. I therefore
especially acknowledge the work done by my fellow PhD students in all fields.
Together, we can continue broadening horizons.

The work presented in this thesis is supported by the Commission of the
European Union within the CREMA H2020-RIA project (Grant agreement
no. 637066), by Pantos GmbH within the TAST research project, by the Vienna
Science and Technology Fund (WWTF) through project ICT15-072, by the
Osterreichische Forschungsforderungsgesellschaft (FFG) through the Austrian
Center for Digital Production, by the TU Wien University Library, and by
TU Wien research funds. The original idea to the work presented in Chapter 4
is a result of the GI-Dagstuhl Seminar 16341 “Integrating Process-Oriented
and Event-Based Systems”. Furthermore, the author is thankful for having
received support by the Institute of Flight Guidance at the German Aerospace
Center (DLR, FL-PAS) in Braunschweig, Germany.

xiii

To all my dear friends.

Contents

Abstract vii
Kurzfassung ix
Contents xvii
List of Figures xix
List of Tables xxi
Acronyms xxiii
Publications xxvii

1 Introduction 1
1.1 Problem Statement, 3
1.2 Research Questions 4
1.3 Scientific Contributions 6
1.4 Thesis Structure 8

2 Background 9
2.1 Distributed Systems L oL oL 9
2.2 Elasticity Approaches 14
2.3 Prediction Techniques 16
2.4 Artificial Neural Networks 19
2.5 Stateofthe Art 21

3 Predicting Resource Utilization 25
3.1 Fundamentals, 26
3.2 Prediction of Resource Utilization 27
3.3 Evaluation., 30
3.4 Performance Analysis 35
3.5 Related Work 42
3.6 Summary 43

4 Failure Prediction in Business Processes 45

4.1 Fundamentals 47
4.2 Solution Overview 50
4.3 Machine Learning Failure Prediction 52
4.4 Evaluation 60
4.5 Related Work 73
4.6 SUMMATYo e 7
5 Predictive Cloud Scaling 79
5.1 Scaling using Extended Kalman Filters. 80
5.2 Evaluation 92
5.3 Experiments and Results. 97
54 Related Work 104
5.5 Summary e 106
6 Deterministic Contests in Blockchain Transactions 107
6.1 Fundamentals 108
6.2 Decentralized Cross-Blockchain Transfers 111
6.3 Evaluation. 120
6.4 Related Work 124
6.5 Summary 125
7 Conclusions 127
7.1 Research Questions Revisited 127
7.2 Findings 128
7.3 Future Work 130
Bibliography 131

A Curriculum Vitae 161

List of Figures

2.1 Example of a multi-layer ANN 20
3.1 Proposed cloud platform predicting resource utilization 27
3.2 Weak performance of per-language ML models 33
3.3 Distribution of build process records per repository 34
3.4 Error ratio over builds per repository 36
3.5 Error ratio over builds per repository, filtered 37
3.6 Error ratio of unfiltered and filtered data 38
3.7 CPU utilization over file count for repository A 38
3.8 Duration over repository size for repository B 39
3.9 Duration over file count for repository C 39
3.10 Duration over file count for repository D 40
3.11 Performance of per-repository prediction 41
4.1 Example of faults, errors and failures within a process 49
4.2 Proposed system architecture oL 51
4.3 Exampleevent treeo o 57
4.4 Process model mined from the real-world dataset 65
4.5 Collaborative process instances 66
4.6 Example of an execution timeline 68
4.7 Precision over fault rates for synthetic dataset 71
4.8 Recall over fault rates for synthetic dataset 71
4.9 MCC over fault rates for synthetic dataset 72
5.1 Sample images from the example scenario 81
5.2 Overview of the proposed approach 83
5.3 Example of long-term load trend and measurements 83
5.4 Scaling of operators according to thresholds 84
5.5 Additional measurement filtering L. 85
5.6 State transition system used as a base model 88

Xix

5.7 Excerpt of the workload scenarios used in the evaluation 94

5.8 CPU load measurement noise analysis 97
5.9 Running VMs in the Pyramid experiment 98
5.10 Average CPU load in the Pyramid experiment 98
6.1 Sequence of transactions within a DeXTT transfer 117

6.2 Impact of validity period on transaction success 122

1.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5

List of Tables

Summary of core thesis contributions 6
ML model parameters L. 30
Ten most frequent evaluation languages in the dataset 32
ML model variables 35
Summary of aggregated results oL 41
ML model parameters L. 54
Non-zero probabilities for next event 57
Probabilities and outcomeso 59
Results of dataset evaluation 64
Confusion matrix for real-world dataset 69
Performance metrics for real-world dataset 69
EKF notation 82
Sensitivity analysis for ©~ and ©F 96
Aggregate results for the Pyramid scenario 101
Aggregate results for the Square scenario 101
Aggregate results for the Lab scenario 101
Initial state of the involved blockchains 112
State after Pol publication 114
State during witness contesto oL 116
Final state after witness contest 117
Transaction cost analysis 123

xxi

Acronyms

ANN Artificial Neural Network

APIT Application Programming Interface

ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average

AWS Amazon Web Services

BAM Business Activity Monitoring

BPI Business Process Intelligence

BPIC Business Process Intelligence Challenge
BPM Business Process Management

BPMN Business Process Model and Notation
BPMS Business Process Management System
CBT Cross-Blockchain Token

CDF Cumulative Distribution Function

CEP Complex Event Processing

CFS Commodity Flow Survey

CI Continuous Integration

CPEE Cloud Process Execution Engine

CPU Central Processing Unit

DeXTT Decentralized Cross-Blockchain Token Transfers

DSP Data Stream Processing

xxiii

EBS Event-Based System

ECDSA Elliptic Curve Digital Signature Algorithm
EDA Event-Driven Architecture

EFP Event-Based Failure Prediction
EKF Extended Kalman Filter

EVM Ethereum Virtual Machine

FFT Fast Fourier Transform

FIFO First In, First Out

FN False Negative

FP False Positive

GA Genetic Algorithm

GPGPU General-Purpose Graphics Processing Unit
GW Generalized Weierstrass

I/O Input/Output

IaaS Infrastructure as a Service

IoT Internet of Things

KF Kalman Filter

KVM Kernel-Based Virtual Machines
LAN Local Area Network

LS Linear Smoothing

LSTM Long Short-Term Memory
MAPE Monitor, Analyze, Plan, Execute
MCC Matthew’s Correlation Coefficient
MILP Mixed Integer Linear Programming
ML Machine Learning

MPC Model-based Predictive Control
NAG Nesterov’s Accelerated Gradient

NFA Non-Deterministic Finite Automaton
OLS Ordinary Least Squares

OS Operating System

PA Probabilistic Automaton

PaaS Platform as a Service

PM Physical Machine

PoA Proof of Authority

Pol Proof of Intent

PoS Proof of Stake

PoW Proof of Work

QoS Quality of Service

RMSD Root-Mean-Square Deviation
SaaS Software as a Service

SGD Stochastic Gradient Descent
SLA Service Level Agreement

SPE Stream Processing Engine
SVM Support Vector Machine
TIFF Tagged Image File Format
TN True Negative

TP True Positive

TVD Total Variation Denoising
UTA User-Issued Asset

USD United States Dollar

VM Virtual Machine

XES Extensible Event Stream

XML Extensible Markup Language
XOR Exclusive Or

XPP Cross-Blockchain Proof Problem

Core Publications

This thesis is based on previously published work. For the sake of brevity
and readability, these core papers are listed here once, and are not explicitly
referenced throughout the thesis. All papers have been peer-reviewed during
the publishing process. The relationship between the individual publications is
described in Section 1.3. Parts of the manuscripts are contained in verbatim.

e Michael Borkowski, Marten Sigwart, Philipp Frauenthaler, Taneli Hukki-
nen, and Stefan Schulte. “DeXTT: Deterministic Cross-Blockchain To-
ken Transfers”. In: IEEE Access 7.1 (2019), pp. 111030-111042. por1:
10.1109/ACCESS.2019.2934707

e Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. “Minimiz-
ing Cost by Reducing Scaling Operations in Distributed Stream Process-
ing”. In: PVLDB 12.7 (2019), pp. 724-737. po1: 10.14778/3317315.
3317316

e Michael Borkowski, Walid Fdhila, Matteo Nardelli, Stefanie Rinderle-
Ma, and Stefan Schulte. “Event-Based Failure Prediction in Distributed
Business Processes”. In: Information Systems 81 (2019), pp. 220-235.
DOI: 10.1016/73.1s.2017.12.005

e Michael Borkowski, Stefan Schulte, and Christoph Hochreiner. “Predicting
Cloud Resource Utilization”. In: 9th IEEE/ACM International Conference
on Utility and Cloud Computing (UCC). IEEE/ACM, 2016, pp. 37-42.
DOI: 10.1145/2996890.2996907

e Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. “Moderated
Resource Elasticity for Stream Processing Applications”. In: Parallel
Processing Workshops (Euro-Par). LNCS 10659. Springer, 2017, pp. 5-16.
DOI: 10.1007/978-3-319-75178-8_1

xxvii

https://doi.org/10.1109/ACCESS.2019.2934707
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.1016/j.is.2017.12.005
https://doi.org/10.1145/2996890.2996907
https://doi.org/10.1007/978-3-319-75178-8_1

CHAPTER

Introduction

Distributed systems play a crucial role in many aspects of today’s digital infras-
tructure, enabling technologies such as cloud storage [78, 111], smart cities [210],
or the Internet of Things (IoT) [39]. Research within distributed systems entails
fields such as cloud computing [9, 255], Business Process Management (BPM) [89,
232], Data Stream Processing (DSP) [54, 55], or decentralized consensus tech-
nologies like blockchains [278]. Common goals within the research field of
distributed systems often include increased elasticity, flexibility, and scalability
for businesses running a software platform, while maintaining a defined set of
cost [232] or quality constraints [53]. Modern distributed systems feature a high
degree of complexity, inherent to their distributed architecture. The compo-
nents necessary to run and maintain such systems form a complex and opaque
landscape, which can also be very heterogeneous [178], since these components
are often provided by different stakeholders [197], and are executed on diverse
hardware using varying technologies [226]. All of this provides the research
field of distributed systems with many opportunities for optimization on various
levels, and for various metrics.

The process of resource provisioning, i.e., supplying consumers with a set of
resources [60, 178], is one of the most researched areas in distributed systems [27,
118]. Often, we consider the problem of how to place applications on Virtual
Machines (VMs), or VMs on Physical Machines (PMs) [52, 177]. This process is
also called allocation [17]. However, since placement happens on various levels,
in more general terms, we use the terminology of placing tasks on resources.
The resource on which a task is placed is occupied for a certain amount of time
and to a certain degree, and therefore, the exact assignment between resources
and tasks has significant influence on the total resource utilization, affecting the
operational cost and performance of the entire system [60].

Elasticity

Resource
Provisioning

1.

INTRODUCTION

Scaling

Research Goals

Methods and Tools

In addition to finding a proper placement, contemporary distributed systems
must also maintain elasticity [81, 178], which is achieved by dynamically adapting
to workload changes, activating and passivating resources in an autonomic
manner. This capability is referred to as scalability [122]. The decision of when
and how to scale—the scaling decision—is a non-trivial problem. Often, there
are multiple, conflicting optimization target metrics [67]. For instance, a cloud
computing provider is interested in reducing the total cost of operation of the
infrastructure, but at the same time, wishes to maintain a given Quality of
Service (QoS) to fulfill certain Service Level Agreements (SLAs) in order to
avoid paying penalties [53].

While approaches to these tasks are manifold, they usually follow the Monitor,
Analyze, Plan, Execute (MAPE) loop [155, 178]. A crucial classification of
approaches to resource provisioning is the distinction between reactive and
predictive approaches [50], i.e., approaches which monitor the current system
state and react to certain events, and approaches which predict the future
development of the system state and proactively take measures to ensure its
desired performance [199].

In this thesis, we investigate predictive approaches to resource provisioning in
distributed systems. We seek to lay fundamental groundwork for predictive
approaches, such as the methods and tools usable for performing the necessary
predictions, we show how to apply these methods to problems and use cases
found in contemporary distributed systems, and we evaluate their performance.
We consider various types of distributed systems found in literature as well
as in practice, such as cloud computing [37], Business Process Management
Systems (BPMS) [31], DSP [32, 33], and blockchain technologies [38]. We
investigate various aspects of predictive approaches, namely the prediction of
metric values and their filtering, the prediction of process failures, as well as the
employment of determinism to avoid uncertainty. As a result, we seek to gain
insight into how various types of use cases, with various types of available data
and target systems, can be addressed using predictive approaches.

In our proposed approaches to predictive resource provisioning, we use tech-
niques found in the field of Machine Learning (ML), such as Artificial Neural
Networks (ANNs) [119]. The variety of system types, scenarios, use cases, and
client requests poses a challenge when applying ML techniques. For instance,
special care must be taken during the design of ML models, data preparation and
imputation, strategies and parameters for training, verification of performance,
and integration in operational systems [178].

We show how to address these challenges, how to determine suitable choices of
parameters and algorithms, and evaluate the proposed approaches using various
quantitative methods, including testbed evaluation and simulation, as well as
formal and qualitative analysis. Our results show that employing predictive

1.1. Problem Statement

approaches in the presented domains of distributed systems can significantly
improve performance attributes such as response time or adherence to SLAs.

We propose the following example scenario to illustrate how, instead of using a
reactive approach, predictive scaling can be used to maintain elasticity.

Example Scenario. A provider of cloud-based computational services offers
a selection of VMs to customers. A customer can lease a VM, use it for
hosting applications or performing computations, and release it afterwards.
The provider uses an infrastructure consisting of PMs to host customer-leased
VMs. In order to maintain economical viability, the provider uses an elastic
infrastructure, which automatically performs tasks such as scaling (activating
or passivating VMs as necessary), placement (deciding which PM to use
for a leased VM), or resource provisioning (deciding how much of which
resources—such as storage or network bandwidth—to assign to a VM). Since
VMs are used by clients in a dynamic way, and can be leased and released
on demand, the infrastructure is subject to dynamic load changes. If VMs
are requested by a high number of clients, the infrastructure is under heavier
load than during times of low demand.

The provider faces this dynamic environment using predictive approaches:
Instead of merely waiting for changes (e.g., the system load exceeding a
fixed threshold) and reacting to them, the infrastructure actively predicts
whether an increase or decrease of demand is expected. For instance, if
an increase is predicted, PMs are proactively activated in order to react to
an increased load in a timely manner. Compared to a traditional, reactive
approach, such methods improve the system’s capabilities to adapt to a
changing environment.

1.1 Problem Statement

Designing predictive approaches for distributed systems inherently starts with
making predictions about future development of metrics of interest, and as such,
requires data as basis for such predictions. A popular example of a source of
data is found in historical system observation [156]. Once data is selected and
obtained, we require tools and methods for making precise forecasts about the
values of metrics in the future, such as in the next minutes, hours, or days,
depending on the use case. In many contemporary approaches, this is either not
done at all (reactive approaches) [178], or relatively simple methods like linear
regression are used [135], yielding mediocre results.

As an overarching goal of this thesis, we seek to determine how to design
predictive approaches based on the application scenario. Different environments
and different objectives in a given use case require different solutions with
specialized tools and techniques.

1.

INTRODUCTION

A prime class of tools and candidate for finding methods to predicting system
state is ML [100]. While ML provides a rich set of tools suitable for this purpose,
the variety of types of ML models, together with numerous variations and
possible modifications or extensions, poses a challenge for the design process of
predictive approaches, i.e., for the decision of which technique to use based on
the scenario at hand. This is especially the case for distributed systems, where
attention must be paid to efficiency and scalability [9].

In addition, ML models usually have a high number of parameters and hyper-
parameters, and their selection is often done on a trial-and-error basis. In
current literature in the field of distributed systems, there is a lack of substantial
reference for selecting these models and parameters—at times, a ML model is
described as a black box [47]—and researchers as well as developers must invest
time and effort for explorative analysis.

When applying methods from literature in practical settings, practical challenges
emerge. While the rich set of tools provided by ML for processing data—once
a selection of such tools is made—is suitable for creating predictions [181], in
practice, data is often incomplete, or noisy [252]. We require techniques to
overcome these challenges, either by data pre-processing and imputation, or by
adapting mechanisms to filter incomplete data while maintaining functionality.

Finally, in some scenarios, prediction of a certain metric can simply be impossible
due to reasons outside of the designer’s control. This can be due to non-recurring
events and very extraordinary circumstances. We seek ways of dealing with
these scenarios in unconventional ways, for instance, by changing the context of
the system, circumventing the prediction problem entirely.

1.2 Research Questions

In the following, we formulate three research questions (referred to as RQ1
through RQ3), which serve as motivation for the work at hand. The research
questions provide a guide for the core chapters of this thesis, and will be revisited
in Chapter 7, where we assess how our contributions address the objectives
defined in each individual research question.

Research Question I. How can predictive techniques be used in distributed
systems to optimize operational cost, performance, and reliability?

As described in Section 1.1, ML provides numerous tools and methods for
predicting future system state [181]. A key challenge is the application of these
methods in the domain of distributed systems, since due to high system com-
plexity, the data collection, aggregation, processing, and finally forecasting, is an

1.2. Research Questions

elaborate process. In contrast to centralized applications of ML (e.g., economic
forecasting [209], power systems [270], natural language processing [183], or
image recognition [157]), applications in highly distributed systems such as
cloud computing, BPMS, or DSP, require increased attention to scalability and
computational complexity [9].

Special care must be taken to consider these factors throughout the entire process
of design, implementation, parameterization, and operation. Furthermore, as
discussed above, we aim to take into account various types of scenarios and
consider the varying objectives encountered in the various use cases. Based on
this, we aim to select techniques and methods suitable for the scenario at hand.

Research Question II. How can predictive approaches maintain function-
ality and performance in unknown and uncertain situations?

Network connections and their inherent unreliability are ubiquitous in dis-
tributed systems. Especially when using contemporary paradigms like fog
computing [239], each system component must be tolerant to uncertainty such
as network disruptions, increased delay, reduced bandwidth, or total loss of
connectivity, i.e., in a volatile environment [254]. During the disruption, the
system must maintain operation within the boundaries of possibility, as dictated
by the given use case. Once the disruption ceases, the system must commence
normal operation. This tolerance implies that a predictive approach must be
able to function properly even in times where network connections are disrupted,
and therefore metrics are unreliable, imprecise, or unavailable.

Research Question III. Can uncertainty be overcome by adapting the
context of the system?

In some scenarios, the future value of a metric is uncertain, and simply cannot
be predicted due to insufficient or missing data. In these situations, a possible
approach is to reconsider the overall process requirements: Sometimes, the
inability to answer a given question can be addressed by asking a different
question. We seek to find ways of solving issues of insufficient or missing data by
changing the system in a way that makes the system independent of this data.

1. INTRODUCTION

“Predicting
Cloud Resource
Utilization” [87]

“Event-based

Failure Prediction in
Distributed Business
Processes” [31]

1.3 Scientific Contributions

Table 1.1: Summary of core thesis contributions

Reference Contribution Domain Method Main outcome
[37] Chapter 3 Cloud computing ANN regression Error ratio: 0.77
[31] Chapter 4 EBS/BPMS ANN classification Precision: 87%
[32,33] Chapter 5 DSP EKF-based filter Scaling reduction: 88%
[38] Chapter 6 Blockchains Deterministic witnesses [36] Deterministic result

Guided by the research questions formulated in Section 1.2, the core contributions
are highlighted in the following to provide an outline for this thesis. Table 1.1
gives an overview of the core contributions of this thesis, showing the domain of
each contribution, the method used, and the main outcome.

I Contribution I. Predicting Resource Utilization in Cloud Computing

The first contribution is embedded in the context of cloud computing, and en-
tails an approach to predicting resource utilization in the cloud. The presented
approach uses ANNs to train a ML model based on historical data of tasks pro-
cessed by a cloud computing infrastructure. The resulting ML model is capable
of creating resource utilization predictions for future incoming tasks based on
their characteristics. The model yields an error ratio of 0.77, i.e., a decrease of
23% in prediction error, compared to the state of the art. Contribution I has
originally been presented in [37].

Contribution II. Failure Prediction in Distributed Business Process
Management Systems

The second contribution introduces an approach to failure prediction in BPMS.
In such systems, knowledge about an imminent or likely failure can be used
to re-provision resources, for instance, to start another process, or to activate
mitigation strategies. To this end, we connect the two research fields of Event-
Based Systems (EBS) and BPMS, allowing us to leverage on the context of a
business process and to facilitate this previously-unused source of data.

We show that this process context, which often provides a high-volume stream
of events, is a suitable data source for ML training. Our ML model, using an
advanced type of ANNSs, is able to predict the failure likelihood in a business
process. In addition, the prediction also states which process step is the likely
point of failure. In our evaluation, we show that the prediction performance is
significantly increased by using context events. The resulting ML model yields a

1.3. Scientific Contributions

precision of 87%. In addition, we show how to employ failure prediction not only
in a local, intra-organizational setting, but also in a distributed scenario, where
various stakeholders collaborate in a business process, but do not share the
entirety of available data. Contribution II has originally been presented in [31].

I Contribution III. Predictive Scaling in Data Stream Processing

The third contribution discusses elasticity in the context of DSP. We show
how advanced filtering, such as Total Variation Denoising (TVD) and Extended
Kalman Filters (EKFs), can be used to pre-process time series data and filter out
unwanted noise. The usage of such filters allows us to estimate the actual state
of a system with respect to relevant metrics from noisy and imprecise data, and
based on this, perform scaling operations. Our evaluation is conducted using a
testbed, where a real-life DSP scenario found in the research field of biomedical
engineering [137] is enacted, and performance metrics such as Central Processing
Unit (CPU) utilization and SLA violations are observed. Our evaluation shows
that while the required CPU utilization increases by up to 13.9% when using
our proposed EKF-based approach, the amount of scaling events is reduced
by up to 52.4%, and the amount of SLA violations decreases by up to 15.2%.
Based on this, we provide a cost discussion and a break-even point analysis to
determine the conditions necessary for the EKF-based approach to provide cost
benefits. Contribution III has originally been presented in [32, 33].

I Contribution IV. Determinism as a Response to Uncertainty

The fourth and final contribution deals with uncertainty on a higher level and
tackles situations where no predictions are possible due to circumstances like
the absence of a suitable data source. We address this challenge by changing the
system definition in a way that circumvents the missing data. This contribution
is embedded in the context of blockchains, i.e., decentralized consensus, where
multiple parties are competing for a reward in a smart contract. It is crucial to
anticipate which party will win this competition; however, a priori, there is no
means of predicting this outcome.

We therefore redesign the protocol in a way that creates determinism by in-
troducing a metric which is easy to evaluate, but very hard to tamper with,
effectively selecting a winning party in a random (in the sense that each party
has an equal chance of winning), yet deterministic manner. Contribution IV
has originally been presented in [38].

“Minimizing Cost by
Reducing Scaling
Operations in
Distributed Stream
Processing” [32]

“Moderated Resource
Elasticity for
Stream Processing
Applications” [35]

“DeXTT:
Deterministic
Cross-Blockchain
Token Transfers” [38]

1.

INTRODUCTION

1.4 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 provides back-
ground information, specifically, a discussion of distributed systems (Section 2.1),
approaches to maintain elasticity (Section 2.2), techniques for creating predic-
tions (Section 2.3), and ANNs (Section 2.4). In Section 2.5, we highlight the
state of the art and discuss gaps which we will address in the remainder of
the thesis. Chapters 3 through 6 present the main matter of this thesis, and
constitute Contributions I-IV in accordance with Section 1.3. Chapter 3 shows
an approach to predicting resource utilization in the context of cloud computing.
In Chapter 4, we combine the fields of EBS and BPMS, and show how to
perform failure prediction using ML. Chapter 5 demonstrates the usage of EKFs
to create state estimations while tolerating noisy data. Chapter 6 shows how to
circumvent uncertainty by changing the system to create determinism. Finally,
in Chapter 7, we conclude the thesis, discuss the contributions presented in
the previous chapters in light of the postulated research questions, and offer an
outlook for ongoing and future research.

CHAPTER

Background

The concepts presented in this thesis are methods applicable in today’s dis-
tributed systems, which can be used to enhance the functionality of these
systems, reduce their operating cost, or optimize resource utilization. In the
following sections, we discuss the background of distributed systems, how scala-
bility and elasticity are realized, and why predictive methods are promising to
further enhance these features. In addition, we provide a high-level discussion
of contemporary literature with regard to resource provisioning and proactive
approaches, and highlight gaps, thus motivating the choice of approaches within
the individual contributions presented in the subsequent chapters.

2.1 Distributed Systems

Tanenbaum et al. define a distributed system as “a collection of independent
computers that appears to its users as a single coherent system” [248]. While this
definition was coined in 2001, and distributed systems have evolved substantially
since that time, the definition still fits the paradigms used in contemporary
distributed systems. In this work, we therefore use this definition of a distributed
system, and in more detailed contexts, refer to them simply as systems.

The advent of distributed systems is owed to the features they enable. These
features mainly include resource accessibility, transparency, and scalability. Re-
source accessibility means that resources provided by a remote computer—for
instance, data storage or computational power—can be used by clients regardless
of their geographic location [248]. Today, cloud storage providers like Dropbox!
are a prime example of providing accessibility to vast storage resources for clients
such as mobile devices. Transparency refers to hiding some aspects of a system,

"https://www.dropbox.com/

Transparency

https://www.dropbox.com/

2.

BACKGROUND

Scalability

FElasticity

Cluster and Grid
Computing

10

and we differentiate between various transparency types, such as location trans-
parency (hiding where a resource is located), replication transparency (hiding
that a resource is replicated), or failure transparency (hiding the failure and
recovery of a resource) [248].

Scalability is among the most crucial features of modern distributed systems [9,
148]. A system is described as scalable if it is deployable in a wide range of
scales, in terms of user number, data amount, processing rate, number of nodes,
and geographical coverage. Generally, small scales are just as important as large
scales, and scalability means not just the ability to operate, but to operate
efficiently and with adequate QoS, over the given range of configurations [148].
Scalability can be realized in a horizontal or vertical manner [75]. In horizontally
elastic systems, computational units such as VMs are added or removed, and this
process is called scaling out. In contrast, vertical elasticity involves adding or
removing resources from those units, such as CPU cores, memory, or storage [166],
a process called scaling up. The approaches presented in this thesis are not
specific to either of these scaling dimensions and can be used for both horizontal
and vertical scaling. Furthermore, there exist numerous implementations and
classes of scalability [11], with performance-oriented types such as load scalability
or space scalability being among the most important [29]. Other types include
distance scalability or speed scalability. In this work, when describing scalability,
we generally refer to load scalability unless noted otherwise.

A concept related to scalability is elasticity. Various definitions of elasticity
exist [10, 191], and have been collected into a single definition by Herbst et al.,
where elasticity is defined as “the degree to which a system is able to adapt to
workload changes by provisioning and deprovisioning resources in an autonomic
manner, such that at each point in time the available resources match the
current demand as closely as possible” [122]. Therefore, we regard scalability
as a requirement for elasticity [80], since a system featuring elasticity must be
scalable. Elastic systems are often also required to feature self-x properties,
such as self-healing, self-protecting, or self-stabilizing, collectively referred to
as autonomic computing [127]. Generally, elasticity, including scalability and
self-x properties, is a means of ensuring an overall system’s QoS [49, 57]. Often,
a set of requirements about the system’s QoS is collected into a document,
representing an agreement between a service provider and a service consumer,
referred to as SLAs. In some scenarios, SLAs are provided as legally binding
contracts [42], and SLA violations cause penalties for the service provider.

Overall progress of research in hardware and software design has led to the advent
of several paradigms in distributed systems. Tanenbaum et al. already describe
cluster computing systems. A cluster is a set of tightly coupled computers,
connected by means of a high-speed Local Area Network (LAN). In addition,
each node runs the same Operating System (OS) [248]. A cluster provides various
capabilities to its users—for instance, computational power—and benefits from

2.1. Distributed Systems

the sum of resources of the individual computers. A slightly younger paradigm
is grid computing, which, like computing clusters, represents a collective of
computers. However, in contrast to clusters, the computers making up the grid
are federated, often under different administrative domains, and may be different
with regard to hardware and software [248]. Furthermore, since computing
grids are operated by various groups, they tend to be connected through the
Internet, instead of sharing a common LAN connection. Popular examples of
highly distributed computing grids are SETI@home? and Folding@home?, where
participants worldwide provide computing resources for a common goal, in these
cases analyzing radio telescope data and protein folding, respectively.

Cloud computing [15], a paradigm which emerged after the original definition
of distributed systems by Tanenbaum et al., represents the idea of computing
as a utility [46]. Resources such as computational power or storage are hosted
in data centers, and provided to their users on-demand. The entirety of these
provided resources is commonly called the cloud [9]. The utility-like fashion
with which the resources are provided is reflected in simple, predictable cost
models suitable for scalability, where running 1,000 servers for one hour causes
cost comparable to running one server for 1,000 hours [10]. The benefit of this
computing paradigm for the consumer is the lack of upfront investment, which
allows rapid and cost-efficient application deployment, easy calculation of cost,
and therefore bears the potential for scalability. Furthermore, outsourcing the
task of maintaining certain parts of the technology stack to the cloud provider
frees resources on the consumer side. An organizational (and legal) separation
of concerns enables the consumer to focus on the application itself, instead of
also having to manage the infrastructure on which the application is hosted.

A major enabler of cloud computing is virtualization [9], which refers to the
abstraction of hardware aspects in order to decouple it from the executed soft-
ware [195]. While an OS is usually tightly coupled to the executing hardware
through drivers and low-level code called firmware, a VM represents an em-
ulated (virtual) hardware environment. This is done to allow portability of
software between various types of PMs, possibly in different locations. Fur-
thermore, VMs allow the isolation of applications. Applications usually have
specific requirements to the execution environment, including runtime libraries
and additional services, possibly with specific version constraints. Running two
applications on the same host might be impossible due to a conflict of these
requirements and a lack of isolation [79]. Isolating each application’s required
environment using VMs can address this challenge.

Virtualization itself can occur on various levels. Traditionally, entire machines
are virtualized, resulting in VMs, and each VM runs an entire OS, independent
of the physical host and of other VMs. Recently, a more lightweight approach to

’https://setiathome.berkeley.edu/
3https://foldingathome.org/

Cloud Computing

Virtualization

Containers

11

https://setiathome.berkeley.edu/
https://foldingathome.org/

2.

BACKGROUND

laaS, PaaS, SaaS

12

virtualization has gained importance, called containers [79, 86, with Docker? be-
ing a popular implementation. Containers place the cut between non-virtualized
and virtualized software higher up in the stack, with major parts of the OS
kernel shared between individual containers. As containers must still be isolated
from each other, this requires support by the kernel (e.g., using cgroups and
namespaces in the Linux kernel) [79].

In the case of VMs, the virtualization host is called hypervisor, referring to both
the PM hosting the VMs, as well as the virtualization management software
running on the PM, responsible for managing the hosted VMs. In the case of
containers, the nomenclature differs, and for Docker, the host is usually called
container host [208] or Docker host [61].

The term cloud computing is used to refer both to the application delivered
as a service (e.g., Dropbox), and to the hardware and systems software in the
data centers providing these services. Cloud computing is traditionally grouped
into three different levels of provided services [172]. On the lowest level, the
cloud provider is responsible for the hardware, including the storage, network,
computation units and the virtualization host (e.g., the hypervisor). This is
referred to as Infrastructure as a Service (IaaS), and its users are responsible for
managing the OS and all software running within it (runtime environment such
as middleware and libraries, and application software). A higher service level is
Platform as a Service (PaaS), where the cloud provider is responsible for all TaaS
components, and in addition, also manages the OS and the required runtime
environment (middleware, libraries). The user merely deploys the application
software onto the PaaS platform. Finally, Software as a Service (SaaS) refers to
the entire technology stack, including the application itself, being provided.

Fundamentally, TaaS and PaaS differ from SaaS in that the former two levels
are targeted at technical users, e.g., software developers and providers, by
design. In contrast, SaaS is (generally) targeted at a broader audience, since no
knowledge of deploying OSs, libraries, or other software is required. Amazon
Web Services (AWS)? is a prime example of an IaaS and PaaS provider. In
contrast, Dropbox is an example for SaaS. Note that the consumer of an [aaS
or PaaS service can simultaneously be a provider of a SaaS service. In this case,
from the end users point of view, the SaaS provider is responsible for the entire
technology stack. However, internally, the responsibility for certain parts such
as the infrastructure is delegated to the IaaS or PaaS provider (subcontractor).

The shift from conventional computing in data centers to cloud computing
entailed the centralization of tasks and responsibilities. Even though the cloud
itself is a distributed system (consisting of a number of PMs), to the user, it is a
central point of addressing for the service it provides. For instance, even though

“https://www.docker.com/
Shttps://aws.amazon.com/

https://www.docker.com/
https://aws.amazon.com/

2.1. Distributed Systems

Dropbox is a distributed cloud application, a user considers it their central point
of storage for data. This shift towards centralization has both benefits and
drawbacks. While the main benefits are an increase in availability, performance,
and easy cost calculation [9], performing all tasks centralized in the cloud also
poses the drawback of higher communication overhead [248]. In some scenarios,
the network delay induced by sending data to the cloud for processing, and
waiting for a response, is not acceptable, for instance, mobile scenarios, where
delays and energy consumption are crucial [165].

This lack of solutions between on-premise and cloud systems has been the
target for the recent development of fog computing, named after a cloud close to
the ground [30]. Fog computing describes a paradigm filling the gap between
on-premise (edge) and cloud computing [20], where devices physically close to
the edge of the network provide some of the required resources (e.g., computing,
storage), while the cloud works as a supplementary or fallback resource, depend-
ing on the implementation. Due to this fact, the term edge computing is also
prevalent, and fog computing is generally understood to be a generalization and
advancement of edge computing [73].

The underlying development of increased embedding of computing in the phys-
ical world is the IoT, which is seen as an intersection of three paradigms,
namely internet-oriented (middleware), things-oriented (sensors) and semantic-
oriented (knowledge) [113]. Gubbi et al. define the IoT as an “interconnection of
sensing and actuating devices providing the ability to share information across
platforms through a unified framework, developing a common operating picture
for enabling innovative applications. This is achieved by seamless ubiquitous
sensing, data analytics and information representation with Cloud computing
as the unifying framework” [113]. In other words, paradigms such as cloud
computing are seen as enabling technologies for the IoT.

A very recent development in distributed systems is found in blockchains,
also known as decentralized consensus [105], decentralized computing [83], or
decentralized applications [217]. Blockchains can be understood as another
strategy to avoid centralization, and as such are an orthogonal—rather than
competing—technology to edge computing and the IoT. In fact, IoT applications
can benefit from blockchain technologies, just like they benefit from cloud or
fog computing. The core idea behind blockchains is that instead of performing
a computational task on one system under the authority of one party (person
or organization), it is performed by a massively distributed system using smart
contracts [83], where not one authority must be trusted, but the required trust is
distributed among all participants of this system [8]. This removes the necessity
of trusting any single node, while maintaining trust into the technology as a
whole [246]. This is enabled by using cryptographic mechanisms to ensure that
the majority of the participants decides on the outcome of the computation, and
a single attacker cannot manipulate the computation or its result. An attacker

Fog Computing

IoT

Blockchains

13

2.

BACKGROUND

Intrinsic and
FExtrinsic Metrics

Rule-Based
Approaches

14

must be able to control a substantial amount of participating computers to
manipulate the overall system’s behavior [85]. In contrast, a user can trust
the overall system as long as the majority of participants are believed to be
non-malicious.

Today, distributed systems maintain elasticity by monitoring certain metrics,
analyzing the information, planning an action, and executing it [155], a loop
commonly called MAPE. In this process, the underlying metrics play a crucial
role, representing measurable attributes of a distributed system, and changing
over time. Based on the value of one or multiple metrics, a distributed system
can adapt to changes in the state of itself or its environment [41]. This can
be achieved by scaling, or by using advanced adaptation mechanisms spanning
multiple layers [200].

Various kinds of metrics exist. We mainly distinguish between intrinsic and
extrinsic metrics. Intrinsic metrics are values measurable by inspecting the
system state. Taking into account a resource executing a task, such as a VM,
examples for intrinsic metrics include its CPU load [114], memory utilization [68],
network traffic [274], or its overall performance [45]. Other intrinsic metrics
include the memory utilization, the amount of Input/Output (I/O) activity, or
the utilization of storage or network.

In contrast, extrinsic metrics are values measurable by inspecting the system’s
environment or context [99], such as the amount of requests (called load or
demand) [129], or their attributes, such as cost and QoS goals [269].

2.2 Elasticity Approaches

Distributed systems can utilize metrics in various ways to maintain elasticity. A
very simple—and yet widely used [178]—approach is using thresholds of metric
values, and defining actions to be taken when thresholds are reached or exceeded.
One example of such an approach could be the following set of instructions:

e If the CPU load of any VM in the set of VMs exceeds 90%, the system is
under high load. Activate one more VM.

e If the CPU load of all VMs in the set of VMs is below 10%, the system is
under low load. Passivate one VM.

This example encompasses two concepts known in contemporary literature. First,
rules are used to define the system behavior. Such an approach is called rule-
based. Second, thresholds are defined for these rules, resulting in a threshold-based
approach. This combination is very common [178], as it eventually maintains
the system state desired by the operator (the person defining the rules) within

2.2. Elasticity Approaches

the defined thresholds. However, while the system state is kept between the
thresholds in the long run, on a short time scale, the system may significantly
violate the thresholds before its reaction shows effect. For instance, a sudden
increase of load may need not one, but a number of additional VMs for the
system to compensate. However, due to the way the rule-based approach is
formulated, only one VM is activated at a time.

Naturally, one might counter this problem by defining additional rules, such as
the following:

e [f the CPU load of any VM in the set of VMs exceeds 95%, the system is
under very high load. Activate three more VMs.

e [f the CPU load of any VM in the set of VMs exceeds 90%, the system is
under high load. Activate one more VM.

e If the CPU load of all VMs in the set of VMs is below 10%, the system is
under low load. Passivate one VM.

e If the CPU load of all VMs in the set of VMs is below 5%, the system is
under very low load. Passivate two VMs.

However, doing so poses additional issues. First, the thresholds must be chosen
carefully, and assumptions must be made about the behavior of CPU load
within the system. These assumptions are tightly coupled to the type of task
executed by the system (e.g., whether it is heavy on CPU load, heavy on memory
consumption, or heavy on I/O processing). Second, the rules must be created
by an expert, and they must be maintained over time to adapt for concept
drift [264], such as changing demand, different behavior of the VMs (e.g., a
different type of CPU causing less severe spikes in CPU load), or different type
of task executed. This can only be overcome by periodic reviews, which in
turn require expert knowledge and time. Finally, ensuring exhaustion of all
possible rules is difficult. If the expert creating these rules is unaware of a
certain relationship between a parameter and the outcome, the missing rule
goes unnoticed.

The type of elasticity approach discussed above—that is, a system which is
reacting to changes, for instance by following a set of rules—is called a reactive
approach [178]. In contrast, we use a different class of approaches. Instead of
merely reacting to changes in the system or its environment a posteriori, we are
interested in creating systems that anticipate (likely or possible) changes, and act

proactively. We call approaches using such techniques proactive approaches [178|.

The main benefit of proactive approaches is that, if the system anticipates the

change properly, there is no delay included before the system adapts to a change.

Concept Drift

Reactive, Proactive,
and Predictive
Approaches

15

2. BACKGROUND

Classification,
Regression,
Clustering

16

Naturally, the main challenge is accurately anticipating such changes requiring
action by the system.

A specific subset of proactive approaches is a set of techniques called predictive
approaches [178]. Predictive approaches not only anticipate a possible change
and act proactively, but do so by projecting a concrete prediction about the
development of metrics in the (near) future. In order to illustrate the difference
between proactive and reactive approaches, we consider using a scaling approach
in a cloud application using VMs. Maintaining a pool of hot-standby VMs (possi-
bly from a cheaper source of computational resources, such as preemptive VMs),
is a proactive elasticity approach: In order to ensure elasticity in anticipation of
a load increase, hot-standby VMs are used at all times. However, no concrete
prediction is created. In contrast, a predictive approach would, for instance,
create a forecast based on the time of day, where a higher load is expected
during day time, and the number of hot-standby VMs is increased, but during
night time, VMs are spun down, since no demand peak is expected.

Note that reactive, proactive and predictive approaches are not mutually exclu-
sive. In the illustrated example, a suitable approach would be to use predictions
to determine the number of hot-standby VMs, but the transition from hot-
standby to active would still be done reactively. Therefore, a system’s behavior
can be denoted as purely reactive, as proactive but featuring reactive elements,
or as predictive, which includes proactivity and also reacts to changes not
anticipated by the prediction.

2.3 Prediction Techniques

Various methods exist for predicting future values of metrics, ranging from
relatively simple approaches like linear regression to techniques like ANNs [119],
Support Vector Machines (SVMs) [147], or Genetic Algorithms (GAs) [110]. Any
of these techniques can be used for ML, and the result of their usage is called
the ML model. Three main types of tasks performed by ML are classification,
regression, and clustering [138]. Classification is the process of assigning a tuple
of data to one of a finite number of discrete classes. For instance, the tuple

(Skin: Furry, Legs: 4, Whiskers: No, Tail: Yes, Height: 60cm) — Animal: 7

may be classified by a ML classification model as Animal: Dog. In contrast,
regression is the process of assigning a tuple of data to a continuous variable [216].
For instance, the tuple

(Skin: Furry, Legs: 4, Whiskers: No, Tail: Yes, Height: 60cm) — Weight: ?

may be classified by a ML regression model as Weight: 18kg. Note that while
in the classification example, the type (class) of animal was sought, in this

2.3. Prediction Techniques

example, we are interested in the weight, which, in contrast to the type, is
continuous. There are infinitely many values the animal’s weight can be (even
in a bounded context), while there is a finite number of animal types. Finally,
clustering is the process of grouping together tuples belonging into the same
set (sub-populations) [234].

In regression, classification, and clustering, the elements given to the ML model
as input data are called features. For regression and classification, the element
expected as output is called label [175]. Clustering does not operate on labels,
but tries to find groups of similar input data (clusters).

The main benefit of ML is that in contrast to rule-based systems, which can also
be used for classification or regression, the model is trained on data, and once
trained, can be used for classification or regression. There are three fundamental
approaches to training ML models [228]: If the training data consists of a
dataset including labels (known correct outputs), we refer to the process as
supervised learning, since the model can be supervised and feedback about the
correct output can be provided. In contrast, if the training data only contains
features, but no labels, the process is called unsupervised learning. Since no
labels are present for unsupervised learning, the ML model can only react to
common patterns in data, as well as the presence and absence of certain items
in the training data. Finally, reinforcement learning [178] is the process of
training a ML model to maximize a certain reward by performing actions. While
reinforcement learning is related to supervised learning (e.g., feedback is provided
in both scenarios), it differs in the fact that no notion of correct/incorrect is
required, and as such, no explicit labels are required. Instead, values, possibly
taken from the real world, can be presented to the ML model as feedback [56].
One such example would be a ML model learning to fly an airplane by controlling
the input on the three main axes, with the goal of reaching a given altitude. The
reward for the ML model is higher if the airplane is flying closer to its assigned
altitude, and the ML model would try and maintain the maximum reward.

Another distinction in ML is the temporal classification of training tech-
niques [18]. The approach of supplying the ML model with a set of data
for training, and then using the trained ML model in operation, is called offiine
learning. In contrast, online learning is used in situations where data is made
available over time (one by one). Outputs (classes for classification, values
for regression, clusters for clustering) are required during operation, but the
ML model is also trained with each set of data fed during operation, one at a
time [167]. This is required especially for predicting live data, such as stock
market prices.

For classification, precision and recall are important performance metrics for a
ML model. Precision and recall are based on the four commonly used confusion
matrix metrics True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN) [182]. With respect to a given class C, TP denotes

Supervised,
Unsupervised and
Reinforcement
Learning

Online and
Offline Learning

Precision and Recall

17

2.

BACKGROUND

Mcc

RMSD

18

instances correctly classified as C, TN denotes instances correctly classified as
—C' (not C). Correspondingly, FP denotes instances incorrectly classified as C,
and FN denotes instances incorrectly classified as =C. Based on these values,
the definitions of precision and recall are shown in (2.1) and (2.2), respectively.

TP
Precision = ——— 2.1
recision = s (2.1)
TP
Recall = m (22)

Precision determines the fraction of correctly-classified instances of C, relative to
all instances classified as C' (“Out of all classifications of C', how many instances
actually belong to C?”). Recall determines the fraction of correctly-classified
instances of C, relative to all actual instances of C' (“Out of all actual instances
of C, how many instances are classified as C?”).

Precision and recall show different qualities of a classification model. In cases
where a single metric is required, we use the Matthew’s Correlation Coeffi-
cient (MCC) [188], as defined in (2.3). The MCC unites all four confusion
matrix metrics. All three, precision, recall, and MCC, are commonly used
metrics for evaluating binary classification algorithms [188, 213, 240]. All three
values are metrics for the goodness of fit of a ML model, i.e., higher numbers
denote better performance. Precision and recall are bounded to [0; 1], while
MCC is bounded to [—1;1]. Negative MCC values denote performance worse
than random selection.

TP x TN — FP x FN
MCC = (2.3)
V/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

For regression, there is no binary distinction between correct and incorrect
classification (TP, TN, etc.). Therefore, we use numeric values to denote a ML
model’s performance. One commonly used metric for evaluating the quality of
regression is the Root-Mean-Square Deviation (RMSD) [141]. For a regression
model M and a set of tuples 7', the RMSD is defined as shown in (2.4), where
L(t) is the actual label of tuple ¢, and M (t) is the output of the ML model, i.e.,
the regression value.

RMSD(M) — \/ZteT(L(|tT)|— M(t))? (2.4)

2.4. Artificial Neural Networks

2.4 Artificial Neural Networks

In this work, we make heavy use of ANNs [119] as the ML model of preference.

While choosing a ML model, we take into consideration the fair amount of
research in the various areas. ANNs have been shown to provide improved
performance over other ML models [181]. Compared to models like SVMs [147],
Bayesian classification or Fisher’s linear discriminant [26], feed-forward ANN
models with error backpropagation are well-suited for regression and provide
efficient means of statistical pattern recognition while allowing to use compact
models with sufficient generalization performance [26].

ANNs are based on individual units called artificial neurons, modeled after
biological neurons [26]. A neuron takes a finite and constant number m of
continuous values as inputs (z1 to x,,), and produces one continuous value as
output (y). This is achieved by multiplying each input z; (where 1 < j < m)
with a weight w;, and adding all resulting weighted inputs. In addition to the
weighted inputs, an additional input xy with the constant value of g = 1 is
added, together with its own weight wg. This weight wq is called the bias. The
so-called activation function, denoted as ¢, is then applied to the sum of all
weighted inputs (including the bias). Traditionally, both the inputs and outputs
of artificial neurons are normalized to a range such as [0;1] or [—1;1] [214],
or a distribution with mean p = 0 and standard deviation o = 1 [25]. Such
normalization has been shown to greatly improve prediction performance and
to reduce training time [241].

The formula for the output of a single neuron is shown in (2.5).

y = ¢(§%wj$j) (2.5)

An ANN is defined as a network of neurons. There are various classes of
ANNS, and for demonstration purposes, we describe the most common type. We
will discuss special types of ANNs in more detail in Chapter 4, where various
refinements are used.

The neurons of an ANN are aligned in layers [119]. There is at least one layer
of neurons (the output layer), and traditionally, a dedicated input layer is also
used. Additionally, a number of layers between the input and the output layer
is used, called hidden layers. The inputs of each neuron in each layer are the
outputs of all neurons of the previous layer. In other words, if one layer has
a neurons, each neuron in the next layer has a inputs. If the next layer has b
neurons, there are a x b input-output connections. Figure 2.1 shows an example
network consisting of an input layer with two neurons, one hidden layer with
ten neurons, and an output layer with one neuron. The amount of hidden

Artificial Neurons

Activation Function

Neuron Layers

19

2.

BACKGROUND

Backpropagation

20

Input Layer Hidden Layer Output Layer
2 Neurons 10 Neurons 1 Neuron

e

Input 1 — ’ \

‘ _— — Output

N

Figure 2.1: Example of a multi-layer ANN

Input 2 —

layers, as well as their respective number of neurons, vary between ANN models,
depending on their use case.

The inputs of the input layer are the input of the ANN itself (i.e., the features),
and the outputs of the output layer are used as the overall output of the ANN.
The output can be treated as the ANN’s “best guess” for the label corresponding
to the features presented at the input layer. In the context of (future) value
prediction, the ANN output represents the network’s prediction.

The input (and bias) weights of each neuron within an ANN determine the
ANNSs behavior. Therefore, finding suitable values for the weights is the core
goal of training. Without training, a human would have to find suitable weights
for each neuron, which—as mentioned in the downsides of rule-based elasticity
approaches explained in Section 2.2—we aim to avoid.

While research of the concepts behind ANNS, called Logical Calculus [190], dates
back to 1943, a key contributing factor for the uprise in the last decades was
the backpropagation algorithm [120, 222]. Together with the advent of massive
computation power available for training, such as using parallel distributed com-
puting or performing computations using a General-Purpose Graphics Processing
Unit (GPGPU) [207], ANNs became a feasible ML model, and a commonly used
tool for ML tasks.

Training using backpropagation works by presenting one tuple of training
data (features) to the input layer, and reading the output provided by the
network. The difference between the actual output and the correct label (the
error) is then propagated into the network, adapting the network’s weights, so
that the next time this particular tuple is presented to the ANN, the resulting
output will be closer to the correct label. The rate with which the weights are

2.5. State of the Art

adapted is called learning rate. A lower learning rate requires more training
iterations (and therefore, time) to train the ANN. On the other hand, a higher
learning rate increases the risk of the network over-compensating for individual
tuples and not converging to a usable ML model.

2.5 State of the Art

As discussed in Chapter 1, resource provisioning is crucial for implementing
elasticity in distributed systems [60]. In Section 2.1, we have discussed how
various types of metrics can be used to realize such elasticity, and shown described
types of approaches to elasticity. In our discussion, we have seen how proactive
approaches, as opposed to reactive approaches such as rule-based systems, can
provide elasticity without increasing the demand for expert knowledge. In this
section, we provide a high-level overview over the state of the art and its gaps
with respect to resource provisioning.

In the following, we classify existing resource provisioning approaches by the
question answered in the respective approach. Using this classification, we
identify three core resource provisioning questions, namely scaling, placement,
and scheduling. These aspects have been often discussed in the context of cloud
computing [9, 27], but are crucial also in other fields of distributed systems,
such as DSP [63] and elastic BPM [232].

Scaling The ability to dynamically scale in and scale out is a fundamental
feature of contemporary elastic distributed systems. As highlighted in
Section 2.1, the scaling decision is a non-trivial problem [62]. Often,
there are multiple, conflicting optimization target metrics. For instance, a
service provider is interested in reducing the total cost of operation of the
infrastructure, but at the same time, wishes to provide a given QoS, or
needs to fulfill certain SLAs in order to avoid penalties. In some situations,
such penalties can be expressed as a cost factor, which reduces the number
of target variables to be optimized. However, in other situations, the
impact of SLA violations exceeds the impact of additional cost incurred
by penalties. For instance, negative reputation generated by substandard
QoS might be hard to express as numbers [5]. In such cases, additional
non-cost constraints must be introduced.

Placement Task placement is the problem of assigning resources to tasks.
Like scaling, it is one of the most researched problems in various types

of distributed systems, including cloud [27, 118] and DSP systems [52].

As discussed in Chapter 1, the problem of placement can occur between
different layers of a system, such as the placement of applications on VMs,
or VMs on PMs [177].

21

2.

BACKGROUND

22

Placing tasks on resources can be optimized in various ways. The placement
of tasks occupies workers for a certain amount of time, and therefore, the
exact constellation of tasks causes significant changes in the total cost of
operations. Furthermore, various tasks can be co-located (consolidated) on
the same worker in order to save resources, or to reduce latency by avoiding
unnecessary network transmissions [62]. On the other hand, placing certain
tasks on the same worker might have negative impact, e.g., when a high
concurrency of workers regarding a certain resource leads to a situation
of competition, where the distribution of a limited resource among the
workers is uneven, or, in the extreme case, resource starvation occurs [153].
In such cases, dedicated distribution of applications is required [163].

Scheduling In contrast to the placement problem, which deals with the question
of where to place tasks, the scheduling problem arises when asking when
to run a given task. Placement and scheduling are related problems and
sometimes addressed as one [198, 259], aiming at similar goals, including
optimized resource usage [153], adaptive (self-tuning) features [118] and
network efficiency [62].

A holistic overview of resource provisioning strategies and approaches is provided
by De Assuncéo et al. [11]. In this survey, the authors describe an extensive
classification taxonomy of approaches and techniques. Many of these approaches
select a specific metric and aim for optimizing operations with respect to this
metric: Meng et al. [194] discuss traffic-aware VM placement. The goal of this
approach is to reduce the aggregate traffic flowing into a data center. The authors
formulate an optimization problem and design an approximate algorithm, based
on clustering. They use traffic traces collected from production data centers to
evaluate their approach. The approach presented by the authors is applicable
to various classes of distributed systems, not limited to cloud computing. In
contrast, Cardellini et al. [52] discuss a placement approach for DSP applications
based on an Integer Linear Programming problem, explicitly taking into account
the heterogeneity of a system’s resources. Beloglazov et al. [17] apply a best-
fit algorithm enriched by the aspect of energy efficiency. The effect is the
consolidation of VMs on as many physical hosts as possible, in order to minimize
total cost of operation and energy consumption, leading to a reduced carbon
dioxide footprint. Additional solutions include analyzing the network topology,
as shown by Biran et al. [24], where the Min Cut Ratio-Aware VM Placement
Problem is described, and an approach to VM placement while reducing the
worst-case load ratio over topology cuts is shown.

Work by Lorido-Botran et al. [178] provides an overview of proactive approaches
in cloud environments, with a focus on elastic applications. The study compares
rule-based and proactive approaches and highlights the potential of prediction-
based solutions. Furthermore, the authors advocate the necessity for real-world

2.5. State of the Art

data traces for evaluation purposes. While the study is focused on cloud
environments, many of the approaches referenced by the authors are not limited
to this type of distributed system.

Prominent predictive solutions include work by Napoli et al. [204], where wavelet
analysis (a time series analysis methodology) and recurrent ANNSs are used to per-
form load prediction, and Islam et al. [140], where the authors present a resource
measurement and provisioning strategy, again using ANNs. Caron et al. [58]
also perform workload prediction using time series analysis by providing an
auto-scaling algorithm.

As a special case, Gandhi et al. [101] perform resource provisioning using a hybrid
approach with both predictive and reactive elements. A predictive method is
used for coarse, long-term time scales (e.g., hours), i.e., the distribution of
the base load is being predicted for these scales. Additionally, the reactive
provisioning component handles fine-grained, short-term peaks not predicted by
the long-term predictor component.

Nevertheless, many aspects of predictive resource provisioning remain unexplored.
First, on a higher-level view, an analysis of the applicability of certain methods
in certain situations would greatly benefit system designers and architects in
the domain of distributed systems when selecting an approach or technique
for a given use case. While individual literature describes individual methods
on a per-approach basis, holistic overviews, apart from the studies mentioned
above, remain scarce. The remainder of this thesis aims to address this gap
not only by providing additional empirical evidence for applicability of certain
predictive methods in example scenarios, but also by putting these methods in
context with each other, and therefore gaining additional systematic knowledge
about the application of predictive methods in distributed systems. Second,
on the level of the three resource provisioning problems described above, many
detailed aspects have also not yet been extensively studied. For instance, the
per-task estimation of resource utilization for placement and scheduling, or the
fusion of intrinsic and extrinsic sources using EKF-based filtering or ANNS,
remain unexplored. The following chapters of this thesis aim to provide detailed
discussions and in-depth evaluation of these gaps.

23

CHAPTER

Predicting
Resource Utilization

As highlighted in Section 2.1, elasticity is an important property of contem-
porary distributed systems. In this chapter, we investigate the utilization of
resources in a cloud computing system, such as CPU time, memory, and storage,
since understanding the system’s resource utilization and being able to make
predictions about its future development are core requirements for maintaining
elasticity of a distributed system in a predictive manner.

We propose the following example scenario as motivation and guide for the work
presented in this chapter.

Example Scenario. The provider of a cloud-based service for building,
testing, integration, and deployment of software systems, referred to as
Continuous Integration (CI), is serving thousands of clients daily. Software
development companies use this cloud-based CI service for their development
process. Whenever a developer commits code to a repository, this code is
submitted to the cloud-based CI service offered by the provider, built, tested,
and packaged. The CI provider reports on the outcome of the individual
steps (e.g., whether the build was successful, which tests failed, etc.), and, if
no failures occur, deploys the software to testing and production environments.
The provider hosts the CI service on a cloud-based infrastructure, therefore
benefiting from potential scalability and elasticity. To properly maintain
this elasticity, the provider uses predictive scaling approaches. Instead of
waiting for an increase in demand and reacting by scaling out the service,
the infrastructure predicts the anticipated increases, which improves the QoS
experienced by the clients.

25

3.

PREDICTING RESOURCE UTILIZATION

26

3.1 Fundamentals

As stated in Chapter 1, resource provisioning is one of the main tasks for a cloud
infrastructure. Therefore, a central software component is typically dedicated
to this task. In line with related work [145], we refer to this component as the
provisioning agent. The provisioning agent is responsible for the placement of
tasks (i.e., assigning a computational resource such as a VM to a given task),
their scheduling (i.e., deciding when a given task should be executed), and the
system scaling (i.e., deciding whether additional resources are required, and to
what degree the system should scale out or scale in).

Resource provisioning and resource management are vivid fields of research in
cloud computing, resulting in a large number of solutions for reaching placement,
scheduling, and scaling decisions [273]. Often, the focus of resource management
is put on QoS-aware provisioning under given cost constraints, or under another
set of rules [238]. Apart from a large number of general solutions for the
SaaS [268], PaaS [4], and IaaS [171] paradigms, more specific solutions exist,
e.g., for the execution of scientific workflows [247], business processes [134], or
DSP [131] in the cloud.

While the individual aims of cloud resource provisioning solutions differ substan-
tially, e.g., taking into account QoS and SLAs [238], or optimizing the execution
of complex business processes in the cloud [134], the underlying approach is
similar throughout literature: The goal is to distribute task requests onto cloud-
based computational resources such as VMs or containers [136]. In this chapter,
we consider a cloud computing platform which operates using VMs. Incoming
tasks are assigned to a VM by the provisioning agent, depending on the nature
of the task, the expected resource utilization, as well as the current system state.
If the system load is already high and more resources are required, additional
VMs are spun up. Likewise, if the system load is too low, tasks are consolidated,
and VMs are shut down in order to save cost. This behavior, as explained in
Section 2.2, is typical for contemporary cloud computing systems.

For maintaining system scalability in the cloud using predictive approaches,
it is crucial to forecast the amount of resources its incoming tasks will utilize
when executed. Based on this data, the provisioning agent is able to accurately
perform its tasks, i.e., scheduling, placement, and scaling. Due to its proactivity,
the provisioning agent can perform these tasks in advance, instead of merely
reacting to the observed level of resource utilization [140].

To address the challenge of efficient resource provisioning, we present a generic
approach to predicting cloud resource utilization. We show how to use traces of
recorded executions of tasks submitted to a cloud-based service, along with their
resource utilization, to build a ML model capable of predicting the resource
utilization of tasks submitted in the future. In our scenario, we process labeled
data, i.e., task submissions, and the resulting resource utilization values, to

3.2. Prediction of Resource Utilization

Provisioning Decisions

' %4 R
1 1! I]
1 1! rce n :
[<—>1 Scheduler < Predictor 1 : Cloud Resource 1 1
1 1 5
Cloud User 1 1 1 1
\ Provisioning Agent s\ Cloud Infrastructure 1
—————————————————— R R R e

Figure 3.1: Proposed cloud platform predicting resource utilization

create a regression model for subsequent tasks. As the underlying rules and
patterns are not known, we use ANNs, since as described in Section 2.4, they are
well-suited for regression and pattern recognition while maintaining sufficient
generalization performance [26]. In the evaluation of this chapter, we apply
this approach to predict the duration (run time) and CPU utilization of tasks
submitted to a CI service.

3.2 Prediction of Resource Utilization

For predicting resource utilization in the cloud, we propose the employment
of techniques from the field of ML. The intuition behind this approach is that
the resource utilization of a cloud-based task might not scale linearly with
the cardinality of its input. Instead, non-linear behavior is possible, rendering
simple linear regression insufficient. Furthermore, some types of tasks submitted
to a cloud-based service—such as the CI service described in the example
scenario—might take a vector of input data instead of a single item, which would
require multivariate linear regression, substantially increasing the parameter
space. Therefore, we use ML in order to create prediction models from historical
data, i.e., data stemming from past task executions, and use this model for
obtaining future predictions.

3.2.1 Proposed Architecture

In Figure 3.1, we show the overall architecture of our proposed approach. A client,
i.e., a consumer of a cloud-based service, posts a request for the execution of a
task to the system, which is governed by the provisioning agent. The provisioning
agent itself is composed of two components: the scheduler, which is responsible for
performing task scheduling and provisioning, and the predictor, which supports
the scheduler by predicting resource utilization. This enables the scheduler to
optimize its decisions. Applying our example scenario, the CI provider hosts
both the provisioning agent and the cloud infrastructure, e.g., VMs, on which
the CI tasks submitted by the development companies (represented by the cloud
user in Figure 3.1) are placed and executed.

Relation to
Ezample Scenario

27

3. PREDICTING RESOURCE UTILIZATION

Features

Labels

28

Upon receiving a task execution request from the client, the provisioning agent
must decide on how to provision the cloud resources. In contemporary ap-
proaches, this involves finding a schedule (time) and selecting concrete compu-
tational resources (placement) for the submitted task [133]. Such a decision
requires knowledge about the assumed duration and resource consumption of
the task. For this, the scheduler queries the predictor to receive a prediction of
those metrics. Based on the decision reached by the provisioning agent, the task
can then be scheduled and placed, and eventually executed by the infrastructure.

After the execution of the task, the cloud infrastructure reports the measured (ac-
tual) resource utilization back to the predictor. Recorded traces of this data,
i.e., a history of predicted and actual resource utilization values, are used by
the predictor component to train its model.

In this chapter, we investigate in detail how the predictor component can use
the history of recorded traces of tasks executed on the cloud infrastructure, i.e.,
the type of task and its attributes, to achieve accurate utilization prediction for
individual resources.

3.2.2 Machine Learning Model

In order to formalize our approach, we define the problem of predicting the
resource utilization for a given task to be provisioned. We assume that the
provisioning agent is supplied with the following information (features) about
the task (e.g., by the client submitting the task):

e The type T of task to be provisioned

e A vector (a,b,c,...) of input data for the task

Furthermore, a list of resources for which utilization levels are to be predicted (la-
bels) is known a priori. These resources are denoted as Ry, Ra, ..., R, and can
represent CPU time, execution duration, the utilization of memory or storage,
or any other form of resource necessary to execute a task. Thus, the variables
Ri, Ro, ..., R, can be of any type, e.g., Boolean values, integers, or decimals, as
long as they can be encoded in real numbers, which constitute the input domain
for ANN models.

For each resource R;, a prediction of utilization J/%\Z is returned by the ML
predictor. Therefore, the result of a prediction consists of a single data item:

e A vector (}/%\1, }/%\2, ey]/%\n) of resource utilization predictions

To solve this problem of resource utilization prediction, we use ANNs as described
in Section 2.4. To this end, a prediction model T is created for the resource

3.2. Prediction of Resource Utilization

utilization of every task type T that requires such a prediction. The predicted
resource utilization subsequently allows for an optimized provisioning.

Each execution of a task of type 7 with an input vector (a,b,c,...) produces a
vector of measured (actual) resource utilizations (Ry, Ra, ..., R,). This resource
utilization vector is recorded. After collecting a sufficient amount of records, the
data is used to train the ML model. With an increasing amount of training data,
the ML model should become more and more fit, and therefore its predictions
should show increasing accuracy. We have discussed in Section 2.3 that such ML
training approaches can be classified into online and offline approaches, i.e., the
training can happen during the execution or beforehand. In our current approach,
we employ offline learning by using collected data traces to train our ML model,
however, applying online learning is also feasible without substantially increasing

complexity. In Chapter 4, we show how ANNs can be used with online learning.

Once trained, the ML model is able to predict the resource utilization vector to
a certain degree. In other words, the model can then be presented with a task
type T and an input vector (a,b,c,...), and produces a resulting prediction
vector (Ri, Ra, ..., Ry,).

While conducting research in order to obtain a set of parameters for the ANN
we use as a ML model, we found that using an ANN with a single hidden
layer is suitable for most scenarios, including curve fitting, which our use
case represents [220]. We furthermore found that using Stochastic Gradient
Descent (SGD) [40] together with Nesterov’s Accelerated Gradient (NAG) [205,
206] is an established weight update method [245]. The weights are initially
filled by the means of the Xavier algorithm, based on work shown in [106], which
initializes each neuron’s weights using X ~ N, , with =0 and o = noucl+nm’
where nqyt and ny, are the numbers of output and input connections, respectively,
of the neuron. Table 3.1 summarizes the configuration of our ANN model.

In the ANN used in our approach, the input vector is presented to the input
layer neurons, which produce an output according to their weights. This output
is passed to the hidden layer. The neurons in the hidden layer process their
input values according to their weights, and their output is passed on to the
output layer neurons (one for each output variable). The output generated by
those neurons is then considered the output of the ANN, and therefore, the
output of the ML predictor. Figure 2.1 provides a graphical illustration.

In the training phase, i.e., after the execution, the predicted resource utilization
value obtained from the network output is compared to the actual (measured)
resource utilization. The error is used to update the neuron weights according
to the aforementioned NAG method. In the validation phase, i.e., for evaluation,
the value obtained from the network output is also compared to the actual
resource utilization, but the network is not updated, since it is already assumed
to be trained. As discussed in Section 2.3, this is in contrast to online learning,

ANN Topology

Training and
Validation

29

3.

PREDICTING RESOURCE UTILIZATION

30

Table 3.1: ML model parameters used in this chapter

Parameter Value

Input layer neurons 2

Hidden layers 1

Hidden layer neurons 10 per output
Output layer neurons 2

Activation function tanh
Learning rate 0.01
Minimization algorithm SGD [40]
Weight initialization Xavier [106]
Weight update NAG [205, 206]
Weight update momentum 0.9

Training epochs 250

where training is a continuous process. The values obtained from the network
output, as compared to the actual utilization measurements, are used to evaluate
the network’s performance according to the metrics described in Section 3.3.1.

3.3 Evaluation

We thoroughly evaluate the performance of the proposed ML predictor using
various experiments. In our evaluation, we aim to predict the CPU utilization
and duration of cloud-based task executions as two exemplary target variables.
In other words, we regard the CPU utilization and time required by a task as re-
sources (Ry and Ra, respectively), and create according prediction functions (}/2\1
and R, respectively) as defined in Section 3.2.

3.3.1 Baseline and Metrics

In order to determine the degree to which ML improves the prediction of resource
utilization, we require a suitable baseline. In contemporary literature, various
approaches to predicting this utilization exist, as we discuss in Section 3.5.
To establish a proper common ground for performance comparison, we have
identified linear regression as a common element of these approaches. We
therefore use both a basic linear regression predictor—the baseline—and our
proposed ML predictor in our experiments.

It is necessary to observe differences between the predictions]/%\1 and]/%\2 generated
by the predictor (baseline or ML), and the actual values Ry and Rs. For this,
we use the RMSD, defined in (2.4). Note that when referring to the RMSD, we
either explicitly denote a specific variable for which the RMSD is calculated (e.g.,
the RMSD of R;), or use the RMSD without regard to a specific variable, in the

3.3. Evaluation

context of an aggregation. In the latter case, we aggregate the RMSD values for
both R; and Ry using their arithmetic mean.

For a given target variable R;, we designate the RMSD of the baseline as
RMSDg, and the RMSD of our ML approach as RMSDy,. Following this,
we consider the impact of our approach, and define its error ratio for a given
resource R; in a given experiment as:

) RMSDr(R;)
error ratio(R;) = RMSDg(R) (3.1)
We use this metric to be able to compare deviations across metrics regardless
of their order of magnitude and unit. An error ratio of 1.0 indicates that in a
particular experiment, the ML approach achieves the same result as the baseline
approach. Any error ratio above 1.0 indicates that the ML approach performs
worse than the baseline, and a value below 1.0 indicates that the ML approach
yields a lower RMSD than the baseline, thus performing better.

3.3.2 Evaluation Dataset

To evaluate the proposed prediction approach, we created an extensive dataset,
using Travis CI'! and GitHub? as data sources. Travis CI is a publicly available
CI service for projects hosted on GitHub. For instance, when a developer pushes
new code to GitHub, the CI server detects this change, and triggers a new
build—test—package cycle. Travis CI provides information about this CI process
openly and without restriction unless a project is using a premium plan, in
which case the results of the CI process can be hidden. Such results are therefore
not part of our dataset. This data includes—among others—the name of the
project (repository) that has been built, tested, and packaged, the commit ID,
and the build duration.

We gathered the evaluation dataset by creating a crawler program based on
the Travis CI Application Programming Interface (API) to collect data about
project builds. We call the records in this dataset build process records. The
crawler was executed for a total time of roughly one week. We enriched the
data with the GitHub commits’ file counts and total sizes in bytes. By using the
aforementioned API, we collected a raw dataset of over 3 million Travis CI build
process records from over 35,000 GitHub repositories. Out of these, we removed

repositories no longer publicly available (e.g., due to deletion or restriction).

We furthermore excluded repositories larger than 200 MB, since our analysis
later requires downloading code, which was not practical without a given size
threshold. For each repository, we recorded the main programming language

"https://travis-ci.org/
*https://github.com/

Data Sourcing

Pre-Processing

31

https://travis-ci.org/
https://github.com/

3. PREDICTING RESOURCE UTILIZATION

Table 3.2: Ten most frequent evaluation languages in the dataset

Language Build records % of total

JavaScript 241,328 21.2%
Python 192,363 16.9%
Ruby 157,280 13.8%
Java 119,214 10.5%
PHP 103,535 9.1%
C++ 71,359 6.3%
C 58,350 5.1%
Go 98,972 2.5%
Scala 21,422 1.9%
Objective-C 20,169 1.8%
(other) 124,441 10.9%
Total 1,138,433 100.0%

used, to test the hypothesis that the language indicates the technology used,
and impacts the resource utilization of the build task. Information about the
main programming language is provided natively by GitHub.

Finally, since we were lacking CPU utilization information from Travis CI, we
added this metric to the dataset by randomly picking build process records which
were marked by Travis CI as successful, and running them on our private cloud
infrastructure. We recorded the duration and average CPU utilization of these
runs, and correlated this information with the data collected from Travis CI.
From this, we projected the CPU utilization to the rest of the dataset. We only
consider processes where our build succeeded, i.e., unsatisfied dependencies were
ignored by dropping the build process record from the dataset.

Summarizing, the effective dataset we use for training of our resource utilization
prediction approach consists of tuples with the structure shown in (3.2), where
T, a, and b are features, and Ry and Ry are labels.

< T = (Repository, Language), a = File Count, b = Size,
R, = Duration, Ry = CPU Utilization > (3.2)

The processed dataset consists of more than 1.1 million build process records
from around 10,500 repositories. The distribution of the ten most frequent
programming languages used inside this dataset is shown in Table 3.2.

For training, the data is stripped of its labels Ry and Ry, and the predictions
R; and Ry are calculated using both predictors (baseline and ML). The errors

32

3.3. Evaluation

CDF

10 2030 100 200 1000 10000 100000
Error Ratio (log scale)

Figure 3.2: Weak performance of per-language ML models

between R; and }?1 as well as Ry and }/3\2 are then provided to the/\model as
training input for backpropagation. For evaluation, the predictions R; and Rs
are compared to the actual values Ry and R, using the RMSD and error ratio
metrics, as described in Section 3.3.1.

3.3.3 Experiment Methodology

We conduct different preliminary experiments in order to assess the influence of
various features on the prediction accuracy. In particular, we test whether the

programming language alone provides a sufficient level of prediction performance.

This way, repositories previously unknown to the predictor could be assessed
using an existing per-language ML model, without an initial learning phase.

However, our analysis shows that aggregating builds per language, i.e., from
many repositories, drastically reduces prediction accuracy. Figure 3.2 shows the
Cumulative Distribution Function (CDF) of the error ratio in all languages. We
see that the error ratio is in the orders of thousands. The median (CDF = 0.5)
error ratio is around 800, indicating that the ML approach has an error 800
times as large as the baseline approach. We therefore conclude that per-language
ML models are not feasible using our current ANN configuration.

As a next step, we split the dataset by repository. In other words, we train
one ML model per repository, instead of training one per language. This also
seems intuitive given the fact that our initial experiments have shown that
individual repositories have very different build strategies. Generalizing from a
CI task—used in our example scenario—to an abstract task in a cloud computing
platform—the generic use case—this step corresponds to training one ML model

Per-Language
Performance

Per-Repository
Performance

33

3. PREDICTING RESOURCE UTILIZATION

Training and
Validation Sets

34

CDF

0.0

0 200 400 600 800 1000 1200
Build Process Records

Figure 3.3: Distribution of build process records per repository

per scheduled task type 7 (e.g., a task executed by a certain service), instead
of training one global model.

Therefore, we group the build process records by repositories. For this, we con-
sider the amount of training data—that is, build process records—per repository,
since this determines the training data available for a single ML model when
using per-repository ML models. Figure 3.3 shows the distribution of numbers
of build records per repository. On the horizontal axis, the number of build
process records per repository is shown, and the vertical axis shows its CDF.
A vast majority of repositories contains less than 200 build process records. In
other words, for most of the repositories, the size of the dataset used for training
and validation is less than 200. In the field of ML, this is a rather small sample
size. Nevertheless, we will show in Section 3.4.1 that the performance is better
than the baseline approach even for small training sets.

After having grouped the build process records, we randomly split them into
training and validation sets, with a split ratio of 70% and 30%, respectively. We
use these sets for training our ML models, as described in the following section.

3.3.4 Machine Learning Implementation

As discussed in the previous section, we use one ML model for each repository,
not taking into account the language used. We therefore regard the repository
as the task 7 requiring execution. Furthermore, we use two parameters of the
build task: the amount of files in the repository at the time of the build, and
the total repository size in bytes. Finally, the variables we seek to predict are
the duration and CPU utilization of the task.

3.4. Performance Analysis

Table 3.3: ML model variables

Variable Class Type Example
T Repository Nominal Feature Jjlord/git-it
a File count Numeric Feature 113files
b Total size Numeric Feature 82kB

R; Build duration Numeric Label 32.8s
Ry; CPU utilization Numeric Label 82.8%

We therefore formulate the following problem with respect to Section 3.2.2: For
each task, the input variables are the repository itself (7), as well as the file
count (a) and the total size (b) of the repository. The variables we are predicting
are the task duration (R;) and the CPU utilization (R2). An overview of these
variables is given in Table 3.3.

While ANN models generally accept the entire set of real numbers and thus the
input domain of an ANN is not limited, ranges between 0 and 1, or numbers
around 0 with a standard deviation of 1 are used due to the fact that activation
functions used in most ANN models operate in this region.

We perform normalization as discussed in Section 2.4 by measuring the mean and
standard deviation of the input training set, and then using linear normalization
in the form of *=£, in order to achieve a distribution with 4 = 0 and o = 1.

For ANN implementation, we use the open-source Java library Deeplearning4J?,
which, among other features, provides built-in support for multi-layer ANN
models and backpropagation.

3.4 Performance Analysis

In this section, we evaluate our ML prediction approach, based on the methodol-
ogy presented in Section 3.3. We use the error ratio shown in (3.1) as an overall
performance metric.

In Section 3.4.1, we analyze the impact of the amount of training data on
the prediction performance in order to judge how well prediction works for
repositories with few build records. In Section 3.4.2, we provide examples and
an in-depth analysis of individual trained ML model instances. Finally, in
Section 3.4.3, we provide an overall discussion of the results obtained.

Shttp://deeplearning4j.org/

35

http://deeplearning4j.org/

3.

PREDICTING RESOURCE UTILIZATION

36

Baseline better |
ML better |

Error ratio
M b
| 0)

5 oRC ©
5 o O
0

0 200 400 600 800 1000 1200

Builds in repository

Figure 3.4: Error ratio over builds per repository

3.4.1 Impact of Training Data Amount

We argue in Section 3.3.3 that the sanitized dataset has to be split into groups
per repository, since splitting per language yielded too diverse behavior and
unsatisfactory results. However, this split drastically reduces the amount of data
a prediction model receives for training. We recall Figure 3.3, which shows the
distribution of available historical task executions (i.e., build process records)
per repository. About half of the repositories in the dataset (CDF = 0.5) have
no more than 100 build process records, and 95 % of all repositories have 300
build process records or less.

Therefore, our first goal is to assess the relationship between the amount of
build process records and the error ratio. Figure 3.4 shows an overview of the
repositories in the dataset, plotted to display their amount of build process
records, and the resulting error ratio. We see that while the variance of the error
ratio is clearly higher for low numbers of training data (low number of builds
per repository), the increase of the mean error ratio for such repositories is
minor (0.89 highest, compared to 0.85 total mean). Low amounts of executions
for a certain repository yield a high variance, but on average, the performance
is still better than the baseline (error ratio below 1.0).

To confirm this observation, we perform a control experiment. We strip the
dataset of all repositories with the number of build process records lower than T
We use varying thresholds T for this data filtering. The result of one such
filtering (using 7" = 50) is shown in Figure 3.5. The scatter plot shows that
while the filtering is clearly visible, there is still a high amount of outliers, and
the filtering does not significantly increase the performance deviation.

Note that Figures 3.4 and 3.5 refer to the same dataset. To maintain readability,
stochastic subsets have been used for visualizing each dataset. Therefore,

3.4. Performance Analysis

Baseline better

Error ratio

| ML better

200 400 600 800 1,000

Builds in repository

Figure 3.5: Error ratio over builds per repository, filtered (7" = 50)

individual data points from these figures, such as outliers, cannot be correlated.

Figure 3.6 shows this comparison of performance for unfiltered and filtered
datasets using various thresholds T'. Here, we display several filtering thresholds
and their performance outcomes. While the nominal performance increases
slightly with additional filtering, the impact in the median case is not drastic (0.82
without filtering, compared to 0.78 for 7" = 200). The reduced number of outliers
is accountable to the very fact that we are removing outliers in the domain
range (below a certain file size), in turn removing those results as outliers from
the value range.

Summarizing, despite seeming promising at first, filtering input data only
increases prediction performance artificially by a small amount. We therefore
did not perform such filtering.

3.4.2 Detailed Analysis of Resulting Models

In this section, we inspect the resulting (trained) ML models in detail. Each out-
put variable (label) stems from two input variables, forming a three-dimensional
system, and the resulting plot for the prediction function is a (non-flat) surface.
In the following, we show two-dimensional graphs. For each graph, one of the
input variables is shown on the horizontal axis, and the other one is reduced
using projection, i.e., three dimensions are projected onto two dimensions.

We select four individual exemplary repositories (denoted as A, B, C, and D) to
demonstrate the functionality of our ML prediction approach.

In Figures 3.7 and 3.8, A and B, respectively, are shown as examples of repositories
with a good learning fit. Figure 3.7 shows the prediction for A regarding CPU
utilization (as projected over file count) and Figure 3.8 shows the prediction for

Ezxamples of
Good Fit

37

3. PREDICTING RESOURCE UTILIZATION

20

18

16

R e B EE

L2

Error ratio

Baseline better

10
ML better

08 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV I VVVVVVVVVVVV I VVVVVV

U B R

e e S e R

300
280
260
240
220
200
180
160
140
120
100 ||+

80

60

CPU Usage [%]

520 540 560 580 600 620 640
File Count

| O Training @ Validation 8 Learning Resultsl

Figure 3.7: CPU utilization over file count for repository A (error ratio = 0.161)

B regarding duration (as projected over repository size). The error ratios are
0.161 and 0.171, respectively, which means that our approach yields a 84% and
83% decrease in error, respectively, compared to the baseline.

Input variables are shown on the horizontal axes, while output variables are
shown on the vertical axes. Blue marks denote the dataset (hollow circles for
training, opaque circles for validation), while red cross marks indicate the ML
model predictions. Observing the red trace of cross marks, we see that the ML
model has indeed trained to follow a curve corresponding to the training data.
While the training data variance is high, the trace of learning results is generally
close to an average value throughout the entire domain.

38

3.4. Performance Analysis

1400
1300
1200
1100
1000

900

800

Duration [s]

700
600
500
400

8300 000 8350000 8400 000 8450 000
Repository Size [B]

| O Training @ Validation # Learning Resultsl

Figure 3.8: Duration over repository size for repository B (error ratio = 0.171)

Duration [s]

400 450 500 550 600 650
File Count

| O Training @ Validation % Learning Resultsl

Figure 3.9: Duration over file count for repository C (error ratio = 0.267)

39

3. PREDICTING RESOURCE UTILIZATION

Ezxamples of
Bad Fit

40

100

90

80

70

60

50

Duration [s]

401}

30|

20| 8 e

10

300 320 340 360 380 400
File Count

| O Training @ Validation ¥ Learning Resultsl

Figure 3.10: Duration over file count for repository D (error ratio = 1.682)

Another example of good fit is visible in Figure 3.9, where the predicted duration
is shown over the file count for repository C. The ML model performs well
compared to the baseline approach, and the error ratio for this repository
is 0.267, indicating a 73% improvement over the baseline, despite the more
scattered data for this repository.

To also analyze examples of bad fit of our ML model, we observe the results of
repository D in Figure 3.10. We see that due to the high variance of the input
data, the ANN has not been able to find a fitting function. Even though the
resulting estimation is not far off the training data, the error ratio is 1.682, i.e.,
the mean error is 68% higher than for the baseline approach, indicating that
the baseline approach performs better than the ML approach.

3.4.3 Result Overview and Discussion

When analyzing in detail the graphs shown in Section 3.4.2, resulting from
various runs of our approach on the dataset, we see examples of good training fit
in Figures 3.7, 3.8, and 3.9, where the resulting reduction of prediction errors is
84%, 83%, and 73%, respectively. Figure 3.10 shows an example of bad training
fit, where our approach yields a prediction error increased by 68%, compared
to the baseline. We observe that high variance in the domain range severely
reduces the ANN performance.

Our main concern is the distribution of instances with good fit and instances
with bad fit in the results of our experiment. For this, we show the overall
distribution of the performance of our approach in Figure 3.11. Here, the CDF of
error ratios obtained with all repositories in the entire dataset is shown. We see

3.4. Performance Analysis

CDF

04 0.6 0.8 1.0 12 14 16 18 20 2.2
Error Ratio

Figure 3.11: Performance of per-repository prediction

Table 3.4: Summary of aggregated results

Approach RMSD Error ratio
o DBaseline 10.4 1.00
-% ML (worst 5%) 23.9 2.30
5 ML (median) 8.3 0.80
A ML (best 5%) 1.1 0.11
Baseline 12.7 1.00
> ML (worst 5 %) 31.8 2.50
& ML (median) 9.8 0.77
ML (best 5 %) 2.3 0.18

that the median case (CDF = 0.5) exhibits an error ratio of 0.80. In other words,
our approach yields a median 20% decrease in prediction error. Furthermore,
the error ratio 1.0 (i.e., the point until which our approach performs better than
the baseline approach) has a CDF of 0.72. This indicates that for 72% of all
repositories, our proposed ML model outperforms the baseline approach (error
ratio below 1.0).

Table 3.4 compares the performance of our ML predictor to the baseline predic-
tor. In the table, we show the RMSD and the error ratio for both evaluated
approaches. We show the 5% and 95% percentiles for the ML predictor ap-
proaches, as well as the median (50% percentile), to provide an overview of
the result distribution. We see that in the median case, the duration (R;) is
predicted with a RMSD of 8.3s, which, compared to the baseline RMSD of

41

3.

PREDICTING RESOURCE UTILIZATION

Time Series Analysis

Scaling and
Placement

42

10.4s yields an error ratio of 0.80. The CPU utilization (Rs2), in the median
case, is predicted with a RMSD of 9.8%, yielding an error ratio of 0.77.

Limitations of our study can mostly be observed regarding the dataset used
in the evaluation, and general applicability to other scenarios. The dataset
stems from a public cloud-based CI service, and no information about the
underlying hardware and software setting is known. Therefore, with this data,
we cannot study the impact of different types of nodes on the resulting data,
which would require a more extensive dataset with additional information about
the used nodes. Nevertheless, we argue that the evaluation results show sufficient
applicability of our approach in a typical scenario. The cloud-based nature of
the dataset source together with the build processes used as example tasks in
this chapter are typical for situations where cloud resources (in this case, CPU
utilization and time) are served to clients in an ad hoc manner.

3.5 Related Work

Several approaches to predicting or estimating the utilization of resources for
tasks to be provisioned using cloud-based computational resources exist, ranging
from relatively simple mechanisms to complex ones. In this section, we present
and briefly discuss these approaches.

Sarkar et al. [227], similar to our approach, use analysis of historical time series,
but employ a clone detection technique to determine whether resource access
patterns have been encountered before. Gandhi et al. [101] use a hybrid approach
of predictive and reactive provisioning, where the predictive approach works
at coarse time scales (hours) and the reactive approach handles short-term
peaks (seconds). Similarly, Caron et al. [58] use time series analysis and propose
an auto-scaling algorithm. However, for [58], [101], and [227], the prediction
capabilities are restricted, and no ML techniques are used, contrary to our
approach, leading to an increase of required expert knowledge.

Similarly to the provisioning or placement problem, the scaling decision problem
is a main subject of numerous research efforts, especially in cloud computing.
Jiang et al. [146] use a linear regression model to predict future values of resource
utilization. The authors provide CPU, memory, I/0O, and network bandwidth
as examples for predictable metrics. In their evaluation, their approach is
applied to predicting the number of requests. Based on this prediction, the
system performs scaling operations. Caron et al. [58] also predict usage (request
numbers), however, they use a pattern matching algorithm for this prediction.
Dutreilh et al. [82] also seek to automate resource allocation (placement) by
using reinforcement learning with Q-learning [261]. However, in contrast to this
work, which only considers scaling, we provide an approach applying ML, based
on which decisions including placement, scaling, and scheduling, can be reached.

3.6. Summary

However, as argued in Chapter 2, the scaling decision problem (leasing and
releasing) alone is often not sufficient for efficient operation, as provisioning and
placement of resources must also be considered using ML.

One group of such approaches is found in the field of BPMS, where recent
work includes elastic BPMS [230]. This work uses predefined values for each

task type, e.g., defining the amount of CPU a task is expected to utilize [231].

More recent work uses simple (non-trained) linear regression to predict resource
utilization [135] or Mixed Integer Linear Programming (MILP) techniques to
find an optimal provisioning (placement) of service instances [133]. Using our
ML prediction, these approaches and scenarios can be refined and enhanced by
more sophisticated resource utilization prediction.

Viswanath et al. [257] propose an approach similar to our work in that it employs
neuron-based systems to predict resource utilization behavior, but focuses on
the clustering and load distribution of this prediction, instead of the prediction
of resource utilization of tasks themselves.

To the best of our knowledge, two works come closest to the work presented
in this chapter: Both the studies conducted by Mason et al. [186] and by
Islam et al. [140] propose empirical prediction of resource utilization in the
cloud. In addition, both works apply ANN models: Islam et al. use multi-layer
ANNSs and linear regression, while Mason et al. use a combination of ANNs
and evolutionary algorithms called evolutionary ANNs. Islam et al. analyze
TPC-W, a specification for benchmarking e-commerce scalability and capacity
planning for non-cloud e-commerce websites [192], while both Mason et al. and

the approach presented in this chapter use real-world data records for evaluation.

However, both related approaches restrict the prediction to the overall CPU
utilization of a host, while we predict the CPU utilization and duration of
individual tasks. Thus, the results of this approach are more coarse-grained
than the predictions yielded by the approach presented in this chapter.

3.6 Summary

In this chapter, we have shown how to employ methods from the field of ML to
build prediction models for resource utilization from historical data. Using a
real-world dataset collected from a cloud-based CI platform, we have evaluated
our approach and shown that it indeed increases accuracy, as less prediction
error is experienced, compared to the baseline approach. In the median case,
our model predicts the task duration with an error rate of 0.80 (i.e., 20% less
prediction error) and the CPU utilization of cloud tasks with an error ratio
of 0.77 (i.e., 23% less prediction error). In the best 5% of cases, for the task
duration, an error ratio of 0.11 is achieved (i.e., 89% less prediction error), and
for the CPU utilization, the error ratio is 0.18 (i.e., 82% less prediction error).

ML Prediction

43

CHAPTER

Failure Prediction in
Business Processes

BPM addresses the problem of how to design, analyze, configure, enact, and
evaluate business processes [263]. A business process is defined by van der Aalst
et al. as “a generic software system that is driven by explicit process designs to
enact and manage operational business processes” [1]. In the last two decades,
research efforts in the BPM field have resulted in a rich toolset covering all
phases of the BPM lifecycle [1], however, with a strong focus on centralized
and intra-organizational processes. In contrast, distributed and decentralized
business processes have received comparably little attention [43].

Nevertheless, today’s business processes are inter-organizational and distributed
to a large degree, since companies need to collaborate in order to generate
a desired output. Examples for distributed processes can be found in health
care [184], manufacturing [229], or smart grids [219].

One way to include a notion of distribution into business processes is by adopting
basic concepts from the field of EBS [202], which defines a software architecture

pattern based on events, i.e., state changes of process-related objects [201].

Instead of applying a request/response, pull-based messaging pattern, EBS
decouple message producers and consumers by pushing events to receivers. As
one prominent example, the publish/subscribe pattern is based on events which
are sent from a publisher to subscribers [88]. Importantly, event messages are
not aimed at a particular receiver. Instead, a notification service decouples
producers from consumers, and delivers events whenever necessary. This allows
separation of event-based communication from computation [202]. While EBS
can also be centralized, distribution is usually seen as an inherent feature of
modern EBS [162]. This applies both to the potential distribution of data to

45

Business Process
Management

Event-Based Systems

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

Context Events

46

be processed as well as the EBS itself, i.e., such a system can be distributed in
order to allow horizontal or vertical scalability. With the advent of the IoT [12],
a virtually unlimited number of potential event sources exist.

Events can be used to control and adapt distributed business processes during
design time, change time, and runtime, or to simply exchange data between
different process stakeholders. This includes events coming from IoT devices,
but also data from business intelligence or any other event-producing system.

One particular application area of events in business processes is their usage in
order to predict potential failures during process execution. To the best of our
knowledge, research on fault tolerance in business processes has so far focused
on the exploitation of process-inherent knowledge, e.g., from process logs [23,
152], while only a limited amount of approaches consider data stemming from
the context of a process, such as context events. Such events—sourced from
IoT technologies or other data sources—can influence the outcome of a process,
and should therefore be taken into account. Thus, we seek to examine the
exploitation of events in order to find errors and predict potential failures during
process execution. Based on such a prediction, it is possible to initiate according
countermeasures in order to prevent a fault from causing an actual failure.

We investigate the exploitation of events in business processes by combining
BPMS with EBS. Similar to the scenario considered in Chapter 3, we process
labeled data. However, in this chapter, this data is represented as an event
stream, which means that each data item is not independent of its predecessors.
The labeled nature of the data again indicates the usage of ANNs, but the
dependency of data items (events) on each other makes recurrent layers using
Long Short-Term Memory (LSTM) an especially suited sub-type of ANNs [77].
We employ these ANNs to predict whether a running business process is likely
to fail, and at which step. Since business processes often include interactions
between various partners, which can significantly influence the amount and
type of available context events, we additionally analyze the impact of inter-
organizational processes on the prediction performance.

We provide an example scenario for a business process involving multiple partners.
This scenario demonstrates the motivation for predicting a failure impacting the
final process outcome before the failure’s occurrence, in order to allow a timely
reaction to such a failure.

Example Scenario. A container with bananas is shipped from South Amer-
ica to Iceland. This shipment is part of a supply chain business process “Send
goods from South American plantation to supermarket in Grundarfjérour”.
The container is equipped with sensors, which at some point of time identify
a temperature exceeding limits, and therefore emit an according event. Thus,
it is possible to derive that, with very high probability, the bananas are

4.1. Fundamentals

somewhat rotten and therefore cannot be sold in the supermarket. Most
importantly, this can be done before the container is actually opened at
its destination in Iceland, and it is possible to order another shipment as a
countermeasure to compensate for the likely faulty shipment process.

4.1 Fundamentals

In the following sections, we discuss fundamental topics for the content presented
in this chapter, such as process orchestrations and collaborations, event streams,
and the definition of failures in business processes.

4.1.1 Process Orchestrations and Collaborations

In our work, we consider both intra- and inter-organizational processes, and
therefore investigate process orchestrations and collaborations. Both concepts
entail the composition of services and other components necessary for a business
process [94]. While a process orchestration represents the business logic of
a single organization, a process collaboration involves multiple organizations
collaborating to achieve a common goal [14]. In a collaboration, we mainly
distinguish between three overlapping layers: (i) private processes, (ii) public
processes, and (iii) a choreography model [43].

A private process represents the process orchestration—the business logic of
one organization—and corresponds to its executable process [94]. In particular,
it defines the relationship between tasks and characterizes both control and
data flow. The internal logic and corresponding data is usually hidden from
other organizations, e.g., due to confidentiality requirements [92]. In contrast,
a public process represents the interface to other organizations and includes
public tasks as well as the interaction activities from the perspective of one
single organization. The public model logic and data are exposed to other
involved organizations to enable the execution of inter-organizational business
processes. Finally, a choreography model gives an overview of the collaboration

between different organizations and defines the interaction flow between them.

In particular, it describes the inter-organizational interactions, message formats,
and content.

In our example, we argue that a logistic business process includes private and
public processes, as well as a choreography model: First, the initiator of the
process—the owner of the supermarket—is interested in a timely and efficient
shipment. Second, the shipping company has a business process of its own—its
private process. Each organization’s private process is hidden from the other
organizations, and only the interface defined by the choreography model is visible,
describing the total workflow involving all partners to achieve the common goal
of shipping goods.

Private and
Public Processes,
Choreography
Models [93, 159]

Relation to
Ezample Scenario

47

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

Intrinsic and
Context Events

48

At runtime, each organization holds a set of process instances which run con-
currently with the process instances of the collaborating organizations [96]. In
order to correlate between them and to ensure proper interaction, we assume a
global instance identifier. Without loss of generality, the latter is generated by
one organization, i.e., the initiator, and transmitted to the other organizations
for each new collaboration instance, allowing to correlate between exchanged
messages and corresponding process instances.

4.1.2 Event Streams

A process task is a unit of work that is performed to complete a job, and
involves a set of resources, i.e., humans or machines. When a resource performs
a task, data is emitted in the form of events [160]. In this work, we distinguish
between two main types of events. First, intrinsic events are emitted by process
steps starting and finishing. They are intrinsic to the process model, consist
of the process step and its attributes, or of a failure indication, if the given
process step could not be finished successfully. Second, context events stem from
external sources, including IoT devices, sensors, third-party business partners
collaborating in the process, and other data sources. These events are not
directly connected to the process model, but can be correlated to the process
steps, e.g., using temporal or local proximity.

We define the entirety of all events as an event stream. A serialized form, either
for transmission or for persistent storage, is an execution log or event log [211].
In some cases, the event log is part of the process log [211].

In our example, the event stream consists of both intrinsic events, i.e., the
individual process steps like loading/unloading of containers, and context events,
e.g., the readings from the sensors measuring the temperature of a banana
container. Note that a context event does not need to be strictly and bijectively
related to a certain process step, and may very well be used for failure prediction
within multiple processes. For correlation, in our approach, it is assumed that
the temporal co-presence of the process and the context event is sufficient.
Nevertheless, an explicit correlation can be also expressed a priori to limit the
event scope and increase system scalability (e.g., detecting high temperature is
relevant only during the delivery process, not before or afterwards).

4.1.3 Faults, Errors and Failures

Differentiating the terms fault, error, and failure is significant in the context of
failure prediction. In present literature, they have well-defined semantics [13]: A
fault is the adjudged or hypothesized cause of an error. An error is the deviation
of the system from its desired state. Finally, a failure occurs when the system
is not able to deliver its output as it is supposed to, leading to an undesirable
outcome. Therefore, a fault is the cause of the error, which may or may not

4.1. Fundamentals

Container sensor measurement: Quality control:
high temperature rotten bananas

Insufficient thermal insulation Supermdrket
Fault m — | Failure
Root cause Manifestation Process outcome
Observable

Figure 4.1: Example of faults, errors and failures within a process

manifest itself in a failure—it may remain unnoticed, without adversary effect,
or it may be automatically corrected by the system. Conversely, the presence of
a failure implies that during execution, at least one error (and therefore, one
fault) has occurred [13].

In order to associate these semantics with our scenario, we define their application

to a BPMS. Figure 4.1 shows an example business process ending in a failure.

In this example, the thermal insulation of a container represents the (potentially
unobserved) fault, i.e., the root cause of the later failure. Subsequently, this
leads to an error, manifesting itself during step B of the process (for instance,
in a context event consisting of a sensor measuring high temperature), and can
be detected by an observer. Finally, after steps C through G have passed, the
rotten bananas arrive, and the overall process failure—the failure to deliver
edible bananas to the supermarket—becomes evident.

Since according to its definition [13], the fault itself is generally not observable,
we can only detect its earliest manifestation, the (first) error. It is noteworthy
that time passes between the fault and the error, as well as between the error
and the failure. In some processes, those delays may be long enough to initiate

countermeasures if a failure is deemed likely already at the time the error occurs.

Without any prediction, an event constituting an error might not be noticed
as such, and the failure only becomes evident upon its occurrence. However,
adding a predictive element allows us to foresee a possible failure outcome at

the first point in time it is detectable, i.e., when the first sign of an error occurs.

In present literature, rule-based prediction is used to define the characteristics
of errors [124, 276]. In our proposed architecture, these rules are substituted by
a ML component.

Relation to
Ezxample Scenario

49

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

FEvent-Based
Failure Prediction

50

4.2 Solution Overview

Integrating EBS and BPMS enables to control and adapt the execution of
business processes at runtime by leveraging on both intrinsic and context events.

During the execution of a business process in a BPMS, the concrete services
instantiated for the tasks contained in the business process are executed, and this
execution generates intrinsic events. These events consist of task status changes,
e.g., start and termination. With respect to a specific business process, other and
more detailed intrinsic events can be defined (e.g., delivery suspended, machine
restarted, network connectivity unavailable). Moreover, the service provider
can enrich these events with non-functional and QoS information related to the
service execution, such as the amount of resources or the monetary cost required
to perform the task.

Furthermore, during its execution, a business process interacts with the envi-
ronment (context) surrounding the invoked services. Therefore, we can identify
external data sources, which, by generating context events, enrich the process
execution with further information.

As mentioned in Section 4.1.2, context events must be correlated to the business
process, either using temporal information, i.e., a sensor reading during the
runtime of a process step, by local proximity, or using expert knowledge to define
certain event sources as relevant for a given step. Note that we do not necessarily
need to have information about causal relationships, i.e., it is not necessary to
define that an excessive temperature reading indicates an upcoming process
failure. Instead, we merely define that the temperature sensor measurement
is happening during the shipment step. Although many data sources can be
identified, the process of identifying the relevant ones, leading to the generation
of valuable information, strictly depends on the specific business process and on
the application that will exploit this data. For example, if we want to monitor
the shipping process and predict the ability to deliver on time, relevant data
might come from weather monitors (e.g., to detect the presence of snow or heavy
rain), route monitors (e.g., to predict traffic jams), or the presence of human
agents who can slow down the process.

To show the benefits of integrating BPMS and EBS, our solution utilizes EBS
data to perform Event-Based Failure Prediction (EFP) for the business process
execution, and this prediction is performed by the EFP component. Specifically,
the EBS hosts and executes the EFP component which predicts the probability
of failures at runtime, i.e., during the business process execution. The EFP
component automatically learns the failure model by leveraging on intrinsic and
context events. Our solution is general enough to be able to predict failures
related to functional and non-functional dimensions, i.e., it can identify an
unsuccessful termination of the process, e.g., product not delivered (functional

4.2. Solution Overview

BPMS

service
[ervice» s

\ service
result C '
l |—> initiator | «—»
r' s

event EBS
sources |
8. EFP) auece

service

prediction

— transition —— event

Figure 4.2: Proposed system architecture

failure) or a termination with unsatisfying quality requirements, e.g., the delivery
of a damaged product (non-functional failure).

A conceptual representation of our solution is depicted in Figure 4.2. A user who
wants to execute a business process interacts with an initiator component which
is then responsible for launching the execution of the business process and the
EFP component, and forwarding to the user any failure predictions emitted by
the EFP component (during execution) as well as the business process execution
result (upon finishing). When the user requests the execution of a business
process, the initiator submits its description, expressed as a workflow, to the
BPMS. At the same time, the initiator triggers the EBS, which, in turn, creates
a new instance of the EFP component that will predict failures for the newly
started business process. If necessary, the initiator informs external data sources
of interest for the business process so that they can forward their context events
to the EBS. Within the BPMS, each task of the business process is instantiated

using a service that, aside performing its operations, generates intrinsic events.

The amount and type of data transported by these events depend on both the
self-monitoring capability of the service and other motivations (e.g., security,
privacy, political). Within the EBS, all collected events are forwarded to the
EFP component.

To reduce the coupling among the involved entities (i.e., EFP, services, event
sources), the EBS uses a message queue system, where the distributed data
sources publish intrinsic and context events. The EBS allocates a new queue
for each business process execution. By subscribing to this queue, the EFP
component receives all the events related to the business process as a continuous
stream. Since the EFP component is event-driven, each new event can trigger a
failure prediction. To learn and identify failures, the EFP component exploits an
online learning approach based on ANNs, presented in detail in Section 4.3. As
soon as a prediction is available, the EFP component publishes a new event on

51

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

52

an outgoing queue. Based on these events, the user can perform operations, e.g.,
adapt the business process instance, notify a client, or trigger the execution of a
different business process. As proof of concept of our approach, we implement
the EFP component capable of processing an event stream stemming from a
running business process, and predicting likely failures at runtime.

So far, we have considered business processes in a generic manner, without
accounting for the organizations involved in their execution. As stated in
Section 4.1.1, apart from intra-organization business processes, we consider
inter-organizational processes, the fulfillment of which involves the collaboration
among multiple partners. The presence of multiple parties raises the issue of
privacy. As discussed, some organizations might not share information about
their private processes, thus limiting the visibility of their private events. In
Section 4.4, we explicitly consider this critical point while evaluating the efficacy
of the proposed approach.

4.3 Machine Learning Failure Prediction

The core idea of our approach is the assumption that process execution failures
can be predicted based on context events, and that it is therefore possible to
identify early deviations from the expected process behavior.

As outlined in Section 2.2, rule-based approaches have significant drawbacks,
and we therefore use ML for the proposed failure prediction approach. Note
that our solution can co-exist with expert-generated rules. For instance, present
rules could support the initial training phase, during which the ML model might
not produce meaningful output. After initial training, the ML model could be
used to subsequently verify whether present rules are still valid, or have been
made obsolete by concept drift.

4.3.1 Event-Based Failure Prediction Component

The EFP component consists of two interacting systems. The first system is
responsible for the prediction itself: While a process is executed by the BPMS,
and events are populated through the EBS, the EFP component is analyzing
these events. Based on this analysis, the EFP component might indicate that
with a certain probability, a failure is likely going to occur in a given future
process step. Should such a likelihood arise, the EFP component fires an event
to notify subscribers of the event queue. These subscribers can then react, e.g.,
by prompting the user and evaluating possible steps to counteract. The second
subsystem is responsible for training. After each completed process execution, a
trace of the recorded events (including all executed steps) is used to train the
prediction model, increasing accuracy in subsequent runs. Since the model is

4.3. Machine Learning Failure Prediction

performing its predictions on an event stream, and does not need to store the
entire dataset in memory, our solution constitutes an online learning approach.

At the core of our solution, a specially designed ANN model is responsible for
analyzing the stream of incoming data and performing failure prediction. In
addition to the hidden layers discussed in Section 2.4 and used in Chapter 3, our
network contains convolutional and recurrent layers [77]. Convolutional layers
consist of neurons aggregating input from neurons which are semantically similar,
and have proven useful, e.g., for facial recognition [187] or natural language
processing [64]. In our case, this aids to reduce the network’s sensibility to
minor changes in temporal sequences of events. Recurrent layers introduce
circles into otherwise acyclical graphs of neurons; in our case, we use LSTM
layers [132]. This adds state information to the network, which is used to process
temporal sequences of events. As stated in the introduction to Chapter 4, the
combination of both convolutional and recurrent layers combines the power of
both to support efficient training of temporal data by the ANN [77], which is
crucial for processing event streams where each data item is not independent of
its predecessors, as is the case in business process event logs.

Table 4.1 summarizes the parameters of the ANN model used in this chapter.

For our ANN, we use parameters based on our work shown in Chapter 3. While
most of the parameters remain the same, we adapt some parameters for this
application. The amount of input and output layer neurons is higher due to the
higher cardinality of input and output data, respectively.

In contrast to Chapter 3, we use the rectifier activation function [107], instead of
tanh. The rectifier function has the advantage of a lower bound (cutoff), below
which no activation occurs. It has been presented by Hahnloser et al. [115] and
is commonly used in recent years for classification problems [168]. In contrast,
both the tanh function and the very similar sigmoid (logistic) curve approach
their lower bound but only reach it in infinity, i.e., some residual activation
occurs, no matter how low the sum of weighted inputs is. Due to the fact that
the problem approached in this chapter is a classification problem—whereas
in Chapter 3, we considered a regression problem—the ANN used here profits
from the cutoff of the rectifier function. This allows us to reduce the number
of training epochs and the weight update momentum necessary for sufficient
performance to 100 and 0.85, respectively.

4.3.2 Input and Output Structure

As described before, the ANN model is presented with input data both during
training as well as during the actual prediction phase. In the case of training,
we also provide output data (labels) to the network for supervised learning. The
input data consists of the type of event as well as the data associated with the
event, if any. As described in Section 4.1.2, we distinguish between intrinsic

Conwvolutional and
Recurrent Layers

53

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

54

Table 4.1: ML model parameters used in this chapter

Parameter Value

Input layer neurons 40

Hidden layers 1
Convolutional layers 1

Recurrent layers 2

Hidden layer neurons 10 per output
Output layer neurons 20

Activation function rectifier [107]
Learning rate 0.01
Minimization algorithm SGD [40]
Weight initialization Xavier [106]
Weight update NAG [205, 206]
Weight update momentum 0.85

Training epochs 100

events, stemming from the process itself, and context events, stemming from
the external context of the process.

In our notation, we denote the types of process-intrinsic events (i.e., the possible
process steps) as I, lo, [1, . . ., I, where Ig,; represents a failure in the current
step, and the remaining symbols Iy, ..., I, represent all possible process steps.
Context events, e.g., generated by sensors, are denoted as Cy, C1,...,Chn.

We therefore define the input vector for the ANN as shown in (4.1)-(4.3), where
n and m are the number of intrinsic and context events, respectively, known to
the system. Inputg,e,: is a binary vector consisting of one variable I; for each
intrinsic event type in the process and one variable C; for each context event
type. Depending on the type of the incoming event, either exactly one variable
I; is 1 for the intrinsic event I;, or exactly one variable C; is 1 for the context
event type C; in a given input row; all other variables are 0. Furthermore,
Inputp,,, is a vector containing the data associated with the event, if any. This
data might include, for instance, the sensor reading from a temperature sensor.
The cardinality k of Inputp,,, depends on the type of event, i.e., which one of
the variables Ifai]7 I(), Il, ey In, C(), Cl, ey Cm is 1.

Input = [IDPUtEventv IHPUtData] (41)
InputEvent = [Ifaib IO» Ila R ITL7 CO, 017 ERK} Cm]
Inputpgg, = [D07 Dy, ..., Dk}

4.3. Machine Learning Failure Prediction

The output of the ML model is a classification of what the next step of the
model will be (or whether it will be a failure). The process steps contained
in the process model correspond to Ig, lo, I1, ..., I,. Therefore, the output
is a vector giving, for each process step, the probability that this process step
will be the next one. Note that for the sake of simplicity, we only regard one
execution branch of a process. However, this does not limit the applicability of
the proposed model to multiple processes running in parallel. Following this, we
formulate the output vector structure as shown in (4.4).

Output = [I/f\aﬂ,fo,fl, ... ,E] (4.4)

4.3.3 Formalization Model

In order to formally describe the underlying problem and our approach, we
introduce a model for reasoning about the predictions of process outcomes. To
this end, we build upon the model of Probabilistic Automata (PA) [215, 225].
PA are a generalization of a Non-Deterministic Finite Automaton (NFA), where
instead of a membership function determining which states can be reached with
which input, these binary values are substituted by probabilities. Since we
deal with likelihoods, we use the generalization provided by PA instead of NFA.
Formally, a PA consists of the following attributes [215]:

e A finite set of states Q.
e A finite set of input symbols .

A transition matrix P.

An initial state! ¢y € Q.

A set of states F' C Q which are defined as final states.

In our model, the set of states () is the set of process steps, including the failure
state gy, representing a failure in a business process. For the set of input
symbols ¥, we use the set of input and context events read by the predictor.
Our initial state gg is the start state of the business process. The set of final
states I is equal to the set of end states of the business process at hand. By
definition, the failure state is also a final state, i.e., g € F.

The transition (stochastic or probability) matrix P determines the probability
for the automaton to enter another state, given a current state and an input.

!Note that some literature uses a distribution vector for determining the initial state [225]
instead of a fixed single state go. We use a single initial state, since the process model can
be assumed to have a fixed initial state, and this simplifies the definition without reducing
expressive power.

55

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

o6

A common notation in the definition of PA is p;(¢;,z) € P, denoting the
probability for the PA, with the current state ¢; and given the input x to enter
state ¢; [225]. Naturally, the sum of the probabilities for all subsequent states
of a state ¢; and an event s is 1, since it is certain that some state must be
reached, as shown in (4.5).

Vg €Q: Y pilgix) =1 (4.5)

q;€Q

In our model, the probability matrix P is not a fixed matrix. Instead, whenever
a prediction of the following step is required, the previously described ANN is
invoked, yielding probability values for all possible next steps. In other words, a
row of the transition matrix is returned, as shown in (4.4).

We now define that, at any point in time during the execution of a process,
there is an event trace 7', which consists of all so-far recorded events (including
intrinsic events, i.e., state changes, and context events). We argue that the
current process step is deducible from this event trace by merely searching for
the last recorded intrinsic event indicating a process step, and define that step as
q;- In order to predict the subsequent process steps to deduce whether a failure
might occur, we are interested in the probabilities for the process to continue
with a certain step ¢;+1. As discussed, instead of a fixed transition matrix to
determine the probable next step ¢;11, we use the ANN which returns, for each
possible step ¢ € @), the probability for this step. We denote the application of
the ANN model onto a given step trace T' (the invocation of the model with T
as its input) as X (7).

4.3.4 Probability Traversal

Following the previous definitions, we describe the further processing of predic-
tions by the predictor component. We have already defined an event trace T,
which denotes the already-recorded (historical) events and stems from a running
process instance. We invoke the previously discussed ANN onto T, yielding a
row vector out of the transition matrix; we call this vector Pr, as shown in (4.6).

Pr = X(T) (4.6)

For each step ¢ € @ (corresponding to the states of the PA), Pr(q) yields the
probability of the process to continue with this step ¢. This probability for a
single step is called step probability. The sum of all step probabilities for a given
event trace T is 1, since some step, possibly g1, is certainly going to be the
subsequent one.

For instance, Figure 4.3 shows a trace of events T, containing the events
A — B — C. Possible subsequent events, including failures, are shown together

4.3. Machine Learning Failure Prediction

Probabilities Probabilities
Execution trace T' Pr(-) Pr_p()

l 0.005
(D] 0.803

/

0.010
\

0.187 < Failure

—{ History (past) M Prediction (future) }—)
T ”
o

\) 0.995 <— Failure

Time

“now

Figure 4.3: Example event tree for the trace A - B — C

Table 4.2: Non-zero probabilities for next event, corresponding to Figure 4.3

q Pr(q)
D 0.803
E 0.010
gri1 0.187
b)) 1.000

with their probabilities. Elements E and G are defined as final states. The
probability vector Pr has been obtained by invoking the ANN model, yielding
Pr = X(T). The values for Pr are shown in Table 4.2 (events with a probability
of zero are emitted for brevity).

Similarly, this traversal is also performed for subsequent steps. In this manner,
we traverse the entire space of possible subsequent steps, and for each possible
step ¢, re-evaluate all following possible steps. This traversal is done until an
end step is reached, at which point the traversed trace is recorded, together
with its total probability and its outcome.

The total probability is the conditional probability of a given trace T to be
followed by the future step sequence T”, and is denoted as P(T — T"). The
outcome defined as Q(7”) denotes how the sequence T” ends, and is either end,
for an orderly finished process, or fail, if a failure occurred, i.e., if gy was
reached. The probability P is defined as shown in (4.7)—(4.10).

57

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

o8

P(T) =1 (4.7)
P(A — B) =P(A) -P(B) (4.8)
P(A = q)=P(A4) - P(q) (4.9)
P(q) = Pr(q) (4.10)

In (4.7), we define the total probability of the original event trace T as 1, since
the event trace has already been recorded, and thus its occurrence is certain.
In (4.8), the total probability of an event sequence A followed by another event
sequence B is defined as the product of the total probability of A and the total
probability of B. Similarly, in (4.9), we define that the total probability of an
event sequence followed by an event is, again, the product of both probabilities.
Finally, (4.10) defines that the probability of a single element is equal to its step
probability (i.e., the invocation of the ANN is formalized).

Naturally, the sum of the total probabilities of all possible event sequences
following a given trace T is 1, since some event sequence, possibly one where
the outcome is a failure, will eventually be the resulting sequence of the process.

To formalize our traversal, we define the TRAVERSE function of an event sequence
T, which aggregates the results yielded by X(-), as shown in (4.11), where
VISIT(-) is the function generating a set of resulting sequences, based on this
event sequence 1" — q.

TRAVERSE(T) = | visIT(T — ¢) (4.11)
q€Q

The function vISIT(+) is defined as shown in (4.12). As we can see, the function,
upon encountering a non-final element ¢, invokes the TRAVERSE function again
using the concatenation of 7" and ¢, i.e., T — q.

T — q, ifqe F

' (4.12)
TRAVERSE(T — ¢) otherwise

vISIT(T — q) = {

Table 4.3 shows the resulting sequences of the example process, together with
their probabilities P and outcomes 2.

Putting the definitions together, the predictor component can, at any given
point in time during the execution of a process, use the trace of already-recorded
events T', and by invoking TRAVERSE(T), build a list of possible future event
sequences, along with their probabilities P and outcomes 2. In the example at
hand, the most likely scenario is the continuation of the process to D, where a
failure will occur, and the likelihood for this scenario, compared to all possible
scenarios, is 0.799.

4.3. Machine Learning Failure Prediction

Table 4.3: Probabilities and outcomes of Figure 4.3, with T = A - B — C.

™ P(T—T) Q(T)
D — gl 0.799 fail
Gfail 0.187 fail
E 0.010 end
D—dG 0.004 end
> 1.000

4.3.5 Search Space Optimization

For large process models, the search space defined by the recursive function
TRAVERSE can become too large to be processed in an online matter, i.e., during
the process execution. If the processing time increases, the outcome might not
be predicted in time. To mitigate this, we propose several ways of limiting the
search space of the recursive algorithm.

Process Model Correlation Since the underlying predictor uses an ANN
model to predict subsequent events (including steps) in a process, the
results of this prediction might include events which are not possible in
the current state. For instance, if there is no control flow relation between
steps C and G in the example shown in Figure 4.3, and the last event in
the recorded event sequence is C, G is not a possible subsequent event, and
this part of the tree does not need to be explored. With a nalve search,
however, the ML model might still consider this impossible sequence, and
it could even be predicted as the most likely sequence. This is especially
the case during the phase of initial training, or in unusual or novel event
sequences. The reason for this behavior is the fact that the ML model itself
does not take into account the process model being executed. Therefore,
we introduce a stopping condition for the traversal. This condition filters
out event combinations that are not possible according to the underlying
process model.

Probability Limit In a similar manner as with the previously discussed event
sequences impossible according to the process model, we also disregard
highly unlikely events. Our solution introduces a probability parameter
MIN_PROBABILITY which is applied to the total probability of the entire
path. In other words, a possible event branch is not traversed further if
its current total probability falls below a threshold.

Depth and Breadth Limit In addition to a minimum probability, we intro-
duce the parameters MAX_DEPTH and MAX_BREADTH defining the upper
bound for depth and breadth within our search. Limiting the search depth

59

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

60

is based on the fact that predicting events which are too distant in the
future may become decreasingly meaningful. Limiting the search depth
numerically is working together with limiting the probability to reduce
the search space.

The limits represent hyper-parameters of our solution and are used to maintain
an upper bound on the traversal runtime. The primary goal of this bound is to
avoid infinite traversal in processes with cycles (e.g., loops).

Listing 1 shows a consolidated, algorithmic form of all the calculations described
above. While the function RECURSE contains the main (recursive) logic, TRA-
VERSE executes the initial call for RECURSE. The RECURSE function takes two
parameters: T', which is the process trace which is assumed to be already known,
and Py, which determines the total probability until the current step, as
defined in (4.7)-(4.10). Naturally, TRAVERSE initializes this total probability
with 1, because the recorded history of steps has already happened, and therefore
has a probability of 1, as defined in (4.7). Lines 10 and 11 represent the depth
and probability limits, respectively. Line 12 calls the ANN in order to obtain
a vector of probability values for each possible subsequent step. This vector is
sorted in line 13 by probability.

The loop in lines 15-33 iterates over the n most likely subsequent steps, where
n = MAX_BREADTH (ensured by line 18, the breadth limit), and checks whether
they are an end state, a failed state, or a normal process step. For end states,
lines 20—23 add an element to the result vector. Similarly, lines 25—28 handle
failures, which are treated similarly to end states, since they also indicate a
potential outcome of the business process.

For all non-failure and non-end states, lines 30-31 represent the recursive
call to RECURSE, which concatenates T" and the current event e, creates the
resulting total probability of this partial (unfinished) trace, and performs another
calculation as described above.

4.4 FEvaluation

This section presents an empirical assessment of the proposed approach following
the single-case mechanism experiments validation method [265]. The evaluation
was conducted on both a real-world dataset from the finance domain, and a
synthetic dataset created from a realistic distributed manufacturing process.
The datasets were preprocessed and then used for training ML models. This
allows us to assess the performance of the ML models in detecting failures. The
conducted experiments prove the applicability and feasibility of combining EBS
and distributed business processes in a real-world scenario.

4.4. Evaluation

Listing 1 Bounded process tree traversal

1: procedure TRAVERSE(T)
Input: T: The event trace from the currently running process
Output: Possible process outcomes, with probabilities

2
3
4: return RECURSE(T, 1.0)
5. end procedure

6: procedure RECURSE(T, Peyyr)

7 Input: T: An already-fixed event trace T' = [Ty, ..., T;]

8: Input: P...,: Total probability of the current event trace

9 Output: Possible further process traces from T;, with probabilities

10: if |T'| > MAX_DEPTH then return || > Depth Limit
11: if P.,ry < MIN_PROBABILITY then return [| > Probability Limit
12: Pred + GETANNPREDICTIONS(T) > Fetch predictions from ANN

13: sort Pred by Pred.probability descending
14: Breadth < 0
15: for all e € Pred do

16: NextStep < e

17: NextStepProbability <— Pred|e]

18: if ++Breadth > MAX_BREADTH then continue > Breadth Limit
19: if e is end state then

20: Trace <~ T e > @ is the concatenation operator
21: Probability < Pe.u.r - NextStepProbability

22: Outcome < “End state e reached”

23: add < Trace, Probability, Outcome > to Result

24: else if e is failure then

25: Trace < T @ failure

26: Probability < Py - NextStepProbability

27: Outcome <+ “Failure in e”

28: add < Trace, Probability, Outcome > to Result

29: else

30: NextPossibilities <~ RECURSE(T @ e, Peyrr - NextStepProbability)

31: add NextPossibilities to Result

32: end if

33: end for
34: end procedure

61

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

Dataset Criteria

62

4.4.1 Datasets

In order to conduct experiments to evaluate the feasibility of our approach, we
explored various datasets of different domains, and studied their usability and
suitability for the evaluation of our approach.

The search for an appropriate dataset for the experiments was conducted with
respect to the following criteria: Whether the dataset is publicly available to the
research community (PU), event-based (EB), correlated with business process
models (BP), well-documented (DO), whether it contains context events (CE)
and failures (FA), and whether it stems from an inter-organizational process (10).
The two-letter abbreviations are later used in Table 4.4.

A multitude of data sources have been examined from projects, research chal-
lenges, and other public data sources. In particular, datasets from the Business
Process Intelligence Challenge (BPIC)? and the Kaggle Competition® were taken
into account. Platforms for competitions in the domain of data science and ML,
such as Kaggle, are naturally a valuable source for test data. Public directories
for datasets are also available*. Often, these datasets are community-created?.
However, due to the fact that we aim at considering context events, i.e., events
not directly related to the core business process, the spectrum of usable datasets
is significantly narrowed.

In the following, we briefly show the most promising dataset candidates and
discuss our selection. We have identified a number of possible datasets such as
the data from Bosch Production Line Performance®. In the underlying scenario
of this dataset, parts move through the production lines of a manufacturer.
While this happens, features are measured and recorded. The dataset has been
anonymized with respect to the names of the features. For each measurement,
the part is evaluated, and if it fails quality control, this is recorded and the part is
dismissed. The dataset is highly imbalanced with regard to the actual class (i.e.,
failures or passes), and contains a very high number of features (over 12,000).
While this dataset has the advantage of being rather large, the drawback is
that no related business processes are defined. Furthermore, due to the per-part
nature of the data, no business process can be mined as neither a stream of
events, nor temporal correlation between measurements are available.

Another prediction-centered dataset stems from the Transport and Logistics
Case Study (Cargo 2000)". The latter includes events related to messages sent

®https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
3https://www.kaggle.com/
“https://www.springboard.com/blog/free-public-data-sets-data-

science-project/
Shttps://github.com/caesar0301/awesome-public-datasets
Shttps://www.kaggle.com/c/bosch-production-1line-performance
"http://s—-cube-network.eu/c2k/

https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
https://www.kaggle.com/
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://github.com/caesar0301/awesome-public-datasets
https://www.kaggle.com/c/bosch-production-line-performance
http://s-cube-network.eu/c2k/

4.4. Evaluation

within Cargo 2000, now known as Cargo iQ®. As shipments travel through
segments of their transport (e.g., transfers between flights, airlines), their routes
are recorded. This dataset has been sanitized with respect to erroneous or
incomplete messages. The business process related to this dataset has been
already used in research [97] and might have been relevant to our approach.
However, despite the inter-organizational context, the provided dataset as well
as the corresponding process are solely related to the freight-forwarding company
and not to the entire process collaboration. Neither the private processes of the
other involved organizations nor their respective data are available. Furthermore,
as the dataset has been sanitized, it is difficult to identify failures to predict.

A third candidate for our evaluation is the Commodity Flow Survey (CFS)
dataset®. It contains data about 4.5 million shipments. The data describes vari-
ous attributes of the shipments, e.g., the source and destination of the shipment,
type of commodity, whether or not the shipment requires temperature control
during transportation, value, weight, modes of transportation, or hazardous
materials. However, similar to the Bosch dataset, it consists of a series of single,
independent entities. From this, it is difficult to create an event stream, since
no temporal relation is given between the data entries.

Finally, the fourth candidate is taken from the BPIC datasets, various of which
have already been used in research, e.g., [65, 90]. We regard the BPIC 2017
dataset'?. It consists of an event log stemming from a Netherlands-based
financial institute issuing personal loans to applicants. The process from which
the data stems is not explicitly defined in the dataset, but can be mined using a
process miner; e.g., ProM [221]. Tt contains enough variety in its events to be
separated into intrinsic and context events, as described later in Section 4.4.2.

Table 4.4 summarizes the datasets with respect to the specified criteria, where
check marks indicate fulfillment, and check marks in parentheses indicate par-
tial fulfillment. Overall, no dataset satisfies all criteria, but the Cargo 2000
and the BPIC 2017 represent good candidates. Overall, we have selected the
BPIC 2017 dataset, as it satisfies most of the aforementioned requirements, with
the exception that no explicit context events (CE) and failures (FA) are provided
in the dataset, and it is not based on a distributed business process (10). We
tackle the two first limitations by enriching the dataset as described in Sec-
tion 4.4.2. For the third limitation, we decided to address the issue by using an
additional, synthetic dataset, and use it in separate experiments to evaluate the
inter-organizational aspect of our solution. The synthetic dataset is generated
from an artificial, but realistic process collaboration. It was inspired by the CFS
and the Cargo 2000 datasets.

Shttp://www.iata.org/whatwedo/workgroups/Pages/cargo2000.aspx

https://www.census.gov/econ/cfs/pums.html

Opttps://data.4tu.nl/repository/uuid: 5£3067df-£10b-45da-b98b-
86aed4c7a310b

Dataset Selection

63

http://www.iata.org/whatwedo/workgroups/Pages/cargo2000.aspx
https://www.census.gov/econ/cfs/pums.html
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

Real-World
Pre-Processing

64

Table 4.4: Results of dataset evaluation

PU EB BP DO CE FA 10 Comment

Bosch v v v No event stream
Cargo 2000 v v Vv V No collaboration
CFS v v No event stream
BPIC 2017 v Vv v Vv (V) Selected dataset

For our evaluation, we therefore opt for two datasets: (i) one from a real-world
data source (BPIC 2017) to prove the applicability of the approach, and (ii) a
synthetic dataset to show its feasibility in a distributed setting.

4.4.2 Dataset Pre-Processing

Due to the limitations of the real-world BPIC 2017 dataset with regard to
criteria (CE), (FA), and (10), data pre-processing is required.

First, we aim to achieve an event stream consisting of intrinsic and context
events. As described before, the event log contained in the real-world dataset
is taken from the application process for personal loans from a Netherlands-
based financial institution. The log consists of three different types of events:
application state changes, which have event names starting with A_, offer state
changes, starting with O_, and workflow events, starting with W_. A loan
application within the process may produce one or more offers. One of the
offers occurring within an application may be accepted. In this case, the entire
application process is finished. However, if no offer is accepted, the application
process is canceled. The application and offer events represent this process. The
process events represent the necessary actions to be taken within the financial
institution. Since the core business process is the application for loans, we select
all application events (A_) as process events. All remaining events (O_ and W_)
are used as context events.

Second, due to the lack of a process model provided along with the dataset, we
apply data mining techniques to mine such a model. From the application events,
we create a business process by using the Inductive Miner technique [169]. Using
this technique is common in the field of process mining [125], and guarantees
a certain level of rediscoverability [169]. We use the ProM tool!! for process
mining. The resulting process model is shown in Figure 4.4.

Finally, since the BPIC 2017 dataset does not contain any failures, we decide
to select events as failures. In the dataset, around 35% of all loan application
processes end with the process step A_Cancelled (as mined from the event
log). This means that the application was canceled, e.g., because of missing

Hhttp://promtools.org/

http://promtools.org/

4.4. Evaluation

O—{ AA _(;rea.te)—DEA_SUbmitteHA_ConceptHA_AcceptedHA_Complete)—‘
pplication

A_Incom-
O A_Validati X

Validating

Figure 4.4: Process model mined from the real-world dataset

information, denial from the financial institution, or withdrawal by the applicant.
Since this represents a failure to finalize the loan, we define this state as a failure,
i.e., all loan processes ending in this state are treated as failed. No further
injection was required for the real-world dataset.

For the synthetic dataset, we opt for the generation of an artificial but realistic
process collaboration. Data generation is inspired by the aforementioned CFS
dataset. This dataset contains information on domestic freight shipments in
different domains such as manufacturing and wholesale. Data include type,
origin, destination, transport mode, and other shipment attributes. The dataset,
however, includes one single event type rather than a stream of different event
types, with neither time stamps nor correlation to process tasks or partners (no
cases nor traces). Therefore, we define a collaborative process example of a
supply chain scenario where goods are ordered, manufactured and shipped to
the end client [95], similar to our example scenario. The scenario involves six
process partners, i.e., a bulk buyer, a manufacturer, two suppliers, a special
carrier and a middleman.

For each process partner, private and public tasks as well as interactions (through
message exchanges) are defined. For each interaction, an Extensible Markup
Language (XML) template specifying the data elements to be exchanged is
created. The latter ensures consistency of data instances for the simulation.
Indeed, within one execution of the entire process collaboration, the data required
by one partner task might depend on the output or data of another partner
task. Therefore, it is important that the generated data is consistent, even
though it is produced randomly. For instance, the delivery date of an item by
the carrier must not exceed the delivery deadline specified by the bulk buyer
and transmitted to the manufacturer. In total, the collaboration contains 48
tasks distributed over the partners, of which 15 are interactions. Also, 20 data
instances of message templates have been generated.

The process collaboration is simulated using the Cloud Process Execution
Engine (CPEE) [243] in a distributed way, where each process partner is executed

Synthetic
Pre-Processing

65

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

66

‘"Banana Provider ; Supermarket

\ \ sell i
i
1 receive prepare ship order receive quality bananas !
! order bananas bananas \ bananas bananas check 0 1
i
\
|

Process Instances Process Instances

; ID1: receive order 5 tons of bananas ‘ ID1: order 5 tons of bananas, quality check succeeded '
\ \ !

1 receive prepare ship ;Jm ' order receive quality sell '

w order bananas bananas } } bananas bananas check bananas | |

: ‘ |

i

} ID2 : receive order 3 tons of bananas i ID2 : order 3 tons of bananas, quality check failed |

‘ receive prepare ship "32*1 order receive quality’ dispose of

} order bananas bananas \ bananas bananas check bananas

i

\

[Jinteractiontask [| Privatetask [| Public task

Figure 4.5: Collaborative process instances used in the synthetic dataset

separately on a different CPEE instance. The CPEE has been chosen because
it provides an efficient, flexible and lightweight way of executing distributed
workflows, while its modularity allows us to collect the events.

An asynchronous mechanism is implemented to correlate the messages of different
partners. For this purpose, a global instance identifier is defined and exchanged
through messages. The latter is primordial for process partners to correlate a
received message with the correspondent process instance. We also distinguish
between a process instance and a collaboration instance. While the former
represents the instance of one single process, the latter refers to one execution
of the entire collaborative process.

For example, Figure 4.5 describes two interacting processes, a banana provider
and a supermarket. Each process is executed multiple times and each instance of
the banana provider process must be correlated with the corresponding instance
of the supermarket process. The instance identifiers ID1 and ID2 are specified
in all message exchanges to ensure that data from one partner instance will be
consumed by the right partner instance. A correlator (not shown in the figure)
associates a message with the corresponding process and task instance (e.g., a
message 5 tons banana order with task receive order of instance id ID1). The
latter can be centralized or distributed.

The CPEE enables easy collection of events including control and data flow
as well as transactional information about the tasks. All events are stored in
an Extensible Event Stream (XES) file [139], which is based on XML. The
mechanism used to collect execution data from the CPEE also allows an easy
collection and integration of events sent by a context event provider other than
the CPEE [242]. This can be important for the prediction, as some process
tasks might depend on a context event provider, e.g., sensor sources external to
the CPEE. With respect to the previous example, Listing 2 shows an example
of an event of type order_banana from the automatically generated XES file.

© 00O Uk WN

[
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

4.4. Evaluation

Listing 2 Example of an XES event log

<log xmlns="http://www.xes-standard.org/" xes.version="2.0"
xes.features="nested-attributes">

<extension name="Time" prefix="time"
uri="http://www.xes-standard.org/time.xesext"/>

<extension name="Concept" prefix="concept"
uri="http://www.xes-standard.org/concept.xesext"/>

<extension name="Organizational" prefix="org"
uri="http://www.xes-standard.org/org.xesext"/>

<extension name="Lifecycle" prefix="lifecycle"
uri="http://www.xes-standard.org/lifecycle.xesext"/>

<trace xmlns="http://www.xes-standard.org/">
<string key="concept:name" value="Instance 487"/>
<event>
<string key="concept:name" value="order banana"/>
<string key="concept:instance" value="http://cpee.org/~demo/corr/corr.php"/>
<string key="id:id" value="a4"/>
<string key="lifecycle:transition" value="complete"/>
<list key="data_received">
<string key="result">
<order_banana>
<id>mll_1</id>
<quantity>2000 tons</quantity>
<delivery_deadline>2016-12-30<delivery_deadline>
<date>2016-12-18<date>
<address>California<address>
</order_banana>
</string>
</list>
<date key="time:timestamp" value="2016-12-15T15:58:37+01:00"/>
</event>
</trace>
</log>

We perform failure injection by artificially creating faults, which lead to errors,
ultimately generating failures. We define and use the following three major fault
types for injection into the synthetic dataset.

Step-indicated faults For this type of faults, the process shows a sequence
of steps which is characteristic for the given fault. For instance, a fault
may cause an Exclusive Or (XOR) gateway to proceed with a different
process step than it would, had the fault not occurred.

Event-indicated faults Faults manifesting themselves only through certain
events, but not through different process steps executed, are called event-
indicated faults. For instance, a sensor measuring the temperature of a
container of bananas may sense the violation of certain temperature limits
and fire an event. In our model, this corresponds to a context event being
fired during the process execution.

Failure Injection

67

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

68

Predicted Failure Probability

1.00
0.75
0.50
0.25
0.00"
2 4 6 8 10 12 14 16
Steps

Figure 4.6: Example of an execution timeline

Data-indicated faults Certain faults are only indicated by the actual data
associated with certain events. Considering the previous example, a
temperature sensor may be recording temperature as events, regardless
of whether a limit has been exceeded or not. In this case, the firing of
the event itself does not correspond to a fault on its own. In fact, its
associated data (the measured temperature) is the determining factor of
whether a fault has occurred.

We inject faults randomly, using a given fault injection rate. This rate is
varying, and part of our parameter sensitivity analysis in Section 4.4.3. We
randomly select one of the three aforementioned fault types when injecting a
fault. According to fixed fault-error-failure combinations, we add or change
the corresponding events to reflect the errors, and measure the system’s ability
to properly predict failures stemming from these errors. We feed the event
streams with injected faults through the ML predictor component, and, for
each injected fault, record whether and at which point in time the failure is
predicted. Figure 4.6 shows an example of such an evaluation run, showing that
the injection of a fault which is exposed as an error at step 10 is detected by
the predictor. The well-trained predictor immediately changes from indicating
almost certain success (0.0276) to almost certain failure (0.9980) for step 16.

4.4.3 Experiments

The goal of our evaluation is to show that using our EFP component on the
two selected datasets indeed yields useful prediction results. As described later
in Section 4.5, our approach is novel in integrating external data sources and a
common data format, while using an approach based on ML and taking into
account the visibility of event data in an inter-organizational settings. Since due
to this novelty, a reference baseline to compare our results to is not available,

4.4. Evaluation

Table 4.5: Confusion matrix for real-world dataset

Classification
Class Positive Negative by
Positive 1051.14 28.04 | 1079.18
Negative 153.76 1917.95 | 2071.71
P 1204.90 1945.99 ‘ 3150.89

Table 4.6: Performance metrics for real-world dataset

Metric Mean o

Precision 0.873 0.014
Recall 0.971 0.008
MCC 0.879 0.012

we perform extensive experimentation to show the feasibility and applicability
of our approach, and to provide a baseline for future research.

Our experiments all involve running an instance of our EFP component, feeding
the evaluation datasets into it, and recording its performance in predicting the
probabilities of failure for each step. For initial experimentation and tuning, we
use a fixed split of 7 : 3 between training and test sets. The final results shown
in this work, however, were obtained using 10-fold cross validation (using a split
of 9 : 1). The results of the 10 cross validation runs are averaged, with their
standard deviation provided together with the arithmetic mean. This is a widely
accepted standard procedure in the evaluation of prediction solutions [161]. We
use precision, recall, and the MCC, as described in Section 2.3, to measure the
performance of our solution.

Our first experiment aims at verifying the overall performance of our approach.

For this, we use the real-world dataset described in Section 4.4.1 as input for
our EFP component. The resulting confusion matrix is shown in Table 4.5 (all
standard deviations o are below 0.4 and not shown in the table), and the mean
values of the metrics are summarized in Table 4.6.

The results show a precision of 0.873, a recall of 0.971 and an MCC of 0.879.

The classifier resulting from the ML model training performs steadily across
the entire real-world dataset. It is noteworthy that the standard deviation
is relatively low. This, together with the cross validation used, shows that
the performance is not dependent on which one of the partitions was used for
training, and which one was used for testing.

In the second part of our experimentation, we seek to determine the impact of
the available data. In other words, we are interested in how much the visibility
of private events impacts the prediction performance. This requires using the

Methodology

Functional
Fvaluation

Impact of Global and
Local Events

69

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

Discussion and
Limitations

70

synthetic dataset with its inter-organizational events. Since within this dataset,
we inject failures with a given rate, we first examine the impact of this injection
rate parameter on the results. We analyze the sensitivity to this parameter in
order to avoid bias stemming from parameter choice.

We show the results for precision, recall, and MCC in four different scenarios.
In the global scenario, events from all process partners are available to the EFP
component. This corresponds to having all events marked as public events. In
contrast, the local scenario only provides the EFP component with events from a
single partner. This represents the privacy scenario from the use case described
in Section 4.4.1. From these two scenarios, we derive two further scenarios,
leaving out the context events, providing a baseline to compare the results to.
All values are provided together with their standard deviations marked using
error bars. The results for precision are shown in Figure 4.7, recall is shown
in Figure 4.8, and the results for MCC are shown in Figure 4.9. The intuition
that less available data decreases classification performance is clearly visible.
Nevertheless, the data gives insights into the amount of performance decrease
caused by only using the data from a specific partner in the evaluation, and
also provides a comparison of results between scenarios with context (global and
local) and without context events (no context). The biggest drop in performance
is seen for recall at a fault rate of 0.10, where the local scenario reduces the recall
value from 0.972 to 0.299. Removing context events generally decreases precision
and recall and therefore also the MCC, except for the corner cases of very low
fault rates (where both no context scenarios have better recall values than local),
and very high fault rates (where both no contezt scenarios have better precision
values than local). In any case, the global scenario shows significantly better
results than local and no context across the entire evaluation domain.

Furthermore, analyzing the impact of varying fault injection rates in the synthetic
dataset, we see that while precision and recall generally increase with a higher
amount of faults, the MCC shows a sweet spot around 0.50, for all three executed
scenarios. This knowledge has no universal application, since the fault rate is
highly domain-specific. Comparing this data to the real-world dataset, however,
shows that results when using the real-world fault rate (35%) are comparable to
the global scenario.

Generally, we observe an increase in both precision and recall for an increasing
fault rate. While it is difficult to determine a reason for certain performance
metrics, we suspect that the types of processes used in the dataset cause a
high failure rate to be easier for ANNs to process than low failure rates. The
global scenario generally shows better recall than precision. In contrast, the local
scenario shows higher precision values than recall, especially for low fault rates.
We suspect that the inter-organizational structure of the process involved in the
synthetic dataset benefits an accurate detection of inherent faults, increasing
the precision. This, in turn, comes at the cost of lower recall.

4.4. Evaluation

Precision
1.00 -

0.75 4

0.50 +

0.25 4

0.00
0.00 0.25 0.50 0.75 1.00

Fault Injection Rate

Global —— Local
- -+ - Global: No Context --%x - Local: No Context

Figure 4.7: Precision over fault rates for synthetic dataset

Recall
1.00 1

0.75 4

0.50 +

0.25 1

0.00
0.00 0.25 0.50 0.75 1.00

Fault Injection Rate

Global —— Local
- -+ - Global: No Context --%x - Local: No Context

Figure 4.8: Recall over fault rates for synthetic dataset

The no context scenarios aim at giving a baseline for our approach by not taking
into account context events at all. We can observe this scenario to be superior
to local for high fault rates (> 0.75) with regard to precision, and for low fault
rates (< 0.20) with regard to recall. These figures represent some noise that
context events can add, distorting the prediction for those extreme cases of fault
rates. The MCC, which aims to find a one-metric balance between many possible
metrics to compare classifiers, however, is consistently higher for local than for
no contert, and the highest for global. From these results, we conclude that

71

4. FAILURE PREDICTION IN BUSINESS PROCESSES

Result Summary

72

MCC
) I/I/H%ﬁ —
0.75 A
0.50 {
0.25 A
S5 5 R SR S
R i S

0.00

0.00 0.25 0.50 0.75 1.00

Fault Injection Rate
Global —— Local
- -+ - Global: No Context --%x - Local: No Context

Figure 4.9: MCC over fault rates for synthetic dataset

considering context events clearly yields significant improvements in precision,
recall and MCC values.

Finally, we note that while our approach does not require experts to create rule-
based failure prediction models, since ML is used, it still requires certain expert
input: (i) The creation of a suitable ML model still requires expert decisions for
selecting ML models and tuning parameters, and (ii) the inclusion of certain
data sources as external events requires domain-specific knowledge. However,
we argue that the area of expertise required is different. While for creating a
rule-based prediction model, experts in the given domain are necessary, in our
case, the required knowledge is more abstract, as skills in ML are required, and
domain-specific knowledge is less relevant.

The proposed approach yields satisfactory results for predicting failures in
business processes. The resulting metrics show a precision of 0.873 (o = 0.014),
a recall of 0.971 (¢ = 0.008) and an MCC of 0.879 (¢ = 0.012). In the second
part of our evaluation, we analyze the performance when facing a scenario where
multiple process partners collaborate, but do not share all of their events, which
is possible in situations where privacy aspects prevent a business process partner
from sharing internal events. We observe that the impact on the performance
is measurable, and, depending on the metric and fault rate, can decrease the
prediction performance from around 0.972 to 0.299 at a fault rate of 0.10.

It is noteworthy that this is a parameterizable approach, and the best learning
model may differ from domain to domain. Therefore, while our approach reduces
the necessary expert knowledge required to create failure prediction models, there
is still the need for an expert for parameter tuning to achieve satisfactory results.

4.5. Related Work

Nevertheless, our approach can provide a flexible and generic methodology of
predicting failures in business process execution.

4.5 Related Work

The usage of events in BPM has gained attention in recent years, with a focus
on fields like Complex Event Processing (CEP) for business processes, Business
Process Intelligence (BPI), and Business Activity Monitoring (BAM) [142, 164].
In addition, work has been done in the area of failure prediction and fault
tolerance, as discussed in more detail below. A more extensive discussion of
event-based BPM can be found in [164, 232]. Nonetheless, only few approaches
consider the execution context of BPM, thus exploiting the presence of context
events in combination with internal events, i.e., those generated internally by
the process execution.

Event-based BPM relies on the principle of Event-Driven Architecture (EDA),
which describes an architectural style with event-driven components and com-
munication [179]. EDA resemble technical aspects of publish/subscribe middle-
ware [88], especially regarding the decoupling of components, and the pushing
of events [44]. In event-based BPM, an EDA allows to communicate events
between different process stakeholders, components, and process steps, and
therefore to control and change business processes during runtime and design
time [6]. In the process of distributing the execution of BPMS [174], several
works exploit the decoupling properties of publish/subscribe systems, to allow
the distributed execution of business processes [144, 223]. The idea is to exploit
the loosely coupled and distributed nature of publish/subscribe systems. The
BPMS becomes an event sink as well as an event source, thus generating and
consuming process-related events [87, 232].

Importantly, the BPMS can be controlled by an EBS through events [142]. In
an early approach to use events in BPM, von Ammon et al. [7] present a basic
reference model to control processes. Event types from Business Process Model
and Notation (BPMN) 1.1 are supported, which includes exception events. The
main focus of this work is on a generic approach to use events to control a
process instance. Hence, the authors do not discuss how exception events could
be generated or how to derive failures from events.

An example for the usage of CEP in order to adapt a business process instance
is presented by Hermosillo et al. [124]. The authors propose to adapt a process
at runtime based on predefined, event-based rules, which makes the approach
rather inflexible. The main contribution of this work is a language to define
these rules and when and how to apply them; nevertheless, there is no discussion
on the nature of the events and how to identify a critical event if it has not
been specified in a rule. A related approach has been presented for scientific
workflows [276]. Here, event messages are emitted by distributed agents for

Integration of
BPMS and EBS

73

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

Failure Prediction

74

workflow execution control. Only events explicitly generated by agents are taken
into account, i.e., context events are not explicitly regarded. Reactions to events
are done based on predefined rules.

Several authors have proposed event-driven monitoring approaches. For instance,
Feldman et al. [97] show an effective example of event-based prediction. In their
use case, real-time monitoring data is used to anticipate issues of cargo shipments.
The prediction model relies on a simple stochastic approach, therefore, it is able
to discover only direct relations between system state and predicted outcome.
More sophisticated approaches to prediction can be investigated, as is shown by
Schwegmann et al. [233]. The authors combine real-time event monitoring with
predictions of future process behavior. The resulting model allows the usage of
a number of ML-based predictors, similarly to our approach. In contrast to our
work, this approach focuses on the prediction of categories and numbers, not on
failures, and only takes into account events generated by a BPMS.

Our work combines a BPMS with an EBS aiming to monitor the execution of
BPM and to perform predictive analysis. We are not interested in discovering
complex events, but rather in processing the huge amount of BPM-related data
to predict the future system evolution. Indeed, similarly to the work by Schweg-
mann et al. [233], we rely on a ML technique for predicting failures. However,
in contrast to all previously discussed work, we augment the events generated
by the BPMS running the business processes with context-related events; the
latter can encompass events generated by IoT devices (e.g., temperature or
position sensors) placed in the real-world execution environment of the business
process. By distinguishing between intrinsic and context events, we strengthen
separation of concerns. This, in turn, allows for a better reuse of the shared
context among multiple business processes.

Apart from the approaches discussed so far, which focus on generic process
adaptation and BAM, there is also a number of approaches explicitly aiming
at fault tolerance for business process executions. From a technical point
of view, different strategies to make service compositions fault-tolerant have
been proposed [277]. Fan et al. [91] introduce a fault tolerance strategy for
service compositions which includes failure detection. However, the detection
is done by comparing an expected result with the actual outcome of a service
composition. Hence, the approach is rather inflexible and requires modeling of
the expected results; an actual failure prediction is not carried out. Events are
generally not taken into account, only the outcome of a service composition is
assessed. In addition, a large number of approaches to tolerating non-functional
faults (e.g., delays) in service compositions have been proposed. For instance,
Leitner et al. [170] use ML techniques to predict performance faults. In an
earlier approach, Canfora et al. [48] propose to re-plan service compositions at
runtime based on QoS. The approaches discussed in this paragraph focus on the
technical level of service compositions, not taking into account context events

4.5. Related Work

as observed in the work at hand, but rather aiming at failures arising from the
execution of software-based process steps.

Failure prediction for business processes is also partially related to the field
of anomaly detection in process executions. For instance, Bezerra et al. [23]
use process mining in order to classify anomalous and normal instances of a
particular process model. The outcome of this anomaly detection is an ex post
analysis whether something uncommon occurred. Also, the approach does not
consider events; instead, process logs are mined. Hence, only anomalous process
steps are taken into account, while we argue that context events actually may
precede such steps at runtime.

To grasp the complex relation among system components and to discover early
symptoms of failures to come, several approaches in existing literature rely on
ML techniques. Abu-Samah et al. [3] rely on Bayesian networks; as a drawback,
this approach requires to be complemented with the extraction and validation
of system patterns, which may involve expert opinions or elicitations on several
levels. Leontjeva et al. [173] address the problem of predicting the (positive or
negative) outcome of an ongoing business process by analyzing event logs using
a Hidden Markov Model. As such, the solution assumes the Markovian property,
therefore it cannot easily take into account long-term dependencies among
events and outcome, like we do. An approach based on Hidden Semi-Markov
Models, which loosen the Markovian property, has been presented in [224].
Pika et al. [211] provide a solution based on statistical analysis aimed to identify
the risk of deadline overruns of processes. A more flexible solution is proposed
in [152], where Kang et al. aim at the detection of abnormal process termination,
and, similarly to our work, the authors apply ML to achieve real-time fault
detection. However, the authors focus on process-intrinsic knowledge, while
context events are not taken into account. In the end, their approach compares
the actual process execution with the expected process execution, again requiring
expert knowledge (definition of the expected process execution). Nevertheless,
this work comes closest to the work at hand. Although focused on process events
only, an interesting approach is proposed by Teinemaa et al. [250]. It jointly
exploits unstructured (free-text) and structured data to predict the process
outcome. Even though we do not consider unstructured data, our approach
could embed the principles presented in [250].

Grambow et al. [112] provide an approach to event-based exception handling
for processes. Importantly, the authors focus on software engineering processes,
not on business processes in general. Their approach to identifying critical
events is based on the event-condition-action pattern, which makes it necessary
to define events and conditions to handle them. While the authors claim
that their approach is able to take into account unanticipated conditions, it
remains unclear how this is achieved. Events are related to process activities and
artifacts, while context event sources are not regarded. In a more specialized

75

4.

FAILURE PREDICTION IN BUSINESS PROCESSES

Context Awareness

Related Work
Summary

76

approach, Pika et al. [212] aim at process risk management through the analysis
of event logs. Since the authors focus on risk management aspects, their work
exceeds the work at hand in terms of prediction of a process outcome: While we
focus on failure prediction, Pika et al. also predict predefined possible process
outcomes, e.g., timeliness of single process steps. To identify risks, process
models are annotated with guards, while in our approach, we do not require
such prearrangements.

Other works focus on identifying root causes of failures. Conforti et al. [66]
propose another approach aiming at process risk management based on the
analysis of event logs. The goal of the authors is to minimize risks by identifying
potential risks (e.g., timeliness, reputation, cost) during the scheduling of work
items. A ML approach is applied on process-related events, thus neglecting
context event sources. Examples for root cause analysis based on event data
and using ML have been proposed before [221, 244]. While we do not focus on
root cause analysis for process faults, this could be another interesting direction
for future work.

Context awareness helps to improve decision-making processes by introducing
new information that can better describe the execution conditions of a business
process. Despite the importance of context information, only few works consider
them explicitly. In [249], the authors investigate the most commonly used
kind of context information employed so far (but not in the field of BPM).
The authors conclude by assessing that performing adaptation in response to
changing execution condition, captured by context information, may be very
beneficial to software systems. A similar idea results from the work in [124],
which relies on events to control the BPM process execution. Nevertheless, the
latter proposes a rule-based approach which may not be flexible enough with
regard to previously unknown context information. Conversely, we leverage on
the flexibility of ML techniques to work in presence of concept drifts [264].

Bohmer and Rinderle-Ma [28] provide a runtime approach to anomaly detection
which also takes into account the context of a process, including time- and
resource-related events. The main goal is to identify malicious attacks on
process executions. The authors base their approach on an explicit set of
expected execution events and their likelihoods of occurrence. In contrast, our
approach only considers the expected execution events in an implicit way, thus
leading to higher flexibility. Also, the approach presented by the authors focuses
on a predefined set of event sources, while we allow the integration of arbitrary
sources, through the concept of context events.

Our presented approach is novel since it proposes an integrated solution which
takes into account the following key points which have not yet been fully regarded
in the existing literature. First, most related work focuses on event logs, not
foreseeing adding arbitrary events, e.g., from the IoT. Through integrating
external data sources and XES as a common data format, we are able to achieve

4.6. Summary

this. Second, the current state of the art in failure prediction mostly depends
on predefined rules or conditions when a particular failure will arise. Through
the application of a ML-based approach, our solution is more flexible, though it
still needs labeled training data. Third, we do not restrict our approach to a
particular goal, such as monitoring, process adaptation, or risk management, but
aim at generic failure prediction. Fourth, to the best of our knowledge, there is
currently no discussion on how the visibility of event data in inter-organizational
settings influences predictions of process outcomes. We conduct such an analysis
as part of our evaluation in Section 4.4.

4.6 Summary

We have discussed the need for methodologies to predict and respond to unfore-
seen events and failures, and presented an approach to employing event-based
error detection and failure prediction for business processes. We have evaluated
our approach using two datasets. The first dataset is a real-world business
process dataset from the financial domain. The second dataset is a synthetic
dataset modeled after a realistic scenario, stemming from a choreography model
involving several partners collaborating in a common business process.

We demonstrate that the implemented failure prediction component is indeed
capable of detecting future failures in business processes. Our evaluation not
only shows that our solution is suitable for predicting failures accurately—in
the real-world dataset experiments, the failure prediction exhibits a precision of
0.873, a recall of 0.971 and an MCC of 0.879—but also provides insight into the
impact of private and public events for varying fault rates.

7

CHAPTER

Predictive Cloud Scaling

In Section 2.1, we discuss that elasticity is a core property of contemporary
distributed systems. By extension, this also applies to DSP [11, 121]. Using the
scalability of the underlying infrastructure, Stream Processing Engines (SPEs)
dynamically adapt to changes in the input data rate during runtime, reducing
cost while aiming at meeting a predefined QoS level [114].

As with all types of distributed systems, in DSP, every scaling operation requires
resources by itself. In the case of DSP, scaling incurs a delay, during which the
DSP system must wait for the resource (e.g., a VM) to become available, and it
consumes energy, leading to computational overhead [108, 185], and therefore
increased cost. Therefore, while being crucial for elasticity, intensive operations
such as scaling and migration should be kept at a minimum [68, 72, 130, 185].

Most approaches to scaling in DSP use thresholds for resource utilization [68,
131, 185, 189], as discussed in Section 2.2. For instance, a DSP system using
threshold-based scaling tries to maintain its load within the defined thresholds
by scaling out (activating new DSP operators) or scaling in (passivating unused
DSP operators) [11, 114]. However, such an approach can result in frequent
scaling operations, incurring an overhead of resource usage and cost [68]. In
certain cases, this overhead is necessary in order to benefit from the additional
computing power, to avoid under-provisioning, or to save energy. However,
excessive scaling also increases the risk of unnecessary cost [68, 185].

System metrics used for reaching scaling decisions can be considered as time
series, containing both long-term trends in data rate, as well as short-term
variances (spikes and valleys) [178]. The long-term trend can be the development
of input data depending, for instance, on the time of day (e.g., peak hours)
or time of year (e.g., summer holidays), while short-term spikes might stem
from spontaneous and short-lived events like bursts in network communication.

79

5.

PREDICTIVE CLOUD SCALING

80

The latter represent noise that we aim to ignore for scaling decisions to avoid
unnecessary cost [68].

In this chapter, we propose to extend classic threshold-based scaling in DSP by
improving the scaling mechanism’s reaction to load changes. Instead of relying
on one metric and employing simple threshold-based scaling, we observe both
intrinsic parameters of a SPE, as well as extrinsic metrics. From these metrics,
we derive an estimated true inner state, neglecting noise (i.e., the short-term
variance) by separating it from the long-term trend. Based on this estimated
state, more stable and robust scaling decisions can be reached. We propose
a concrete scaling mechanism applying EKFs [143, 151] to perform this state
estimation, and evaluate our approach in detail using a testbed with an image
processing workload.

In the following, we introduce a motivational use case scenario for DSP in order
to exemplify the usage of DSP in an area with real-world applicability, modeled
after a real-world scenario [137].

Example Scenario. A Minnesota-based research group in the field of
biomedical engineering is capturing microscopic images of biological cell
tissue, which are processed in various ways in order to gain insight into a
given tissue sample. The images are captured pairwise in a tile-like fashion.
Figure 5.1 shows a sample pair of images captured using two different illu-
mination wavelengths (left, center). An image resulting from an overlay of
those individual images, as used by the biomedical research group, is shown
on the right. The images are then passed through a composition of DSP
operators, called a topology. Within this DSP topology, the image pairs are
processed using various operators (thresholds, pixel value mapping, noise
reduction, etc.) and the results are used to create statistical data about cell
cultures. This statistical data is then used by the researchers to determine
aspects and features of a tissue sample. This processing is performed on an
elastic DSP platform, where VMs are used to host DSP operators.

Instead of reacting to every spike and valley of its load measurements, the
DSP platform uses EKF-based filtering to achieve a smooth time series of
measurements. This way, it can react quickly to actual changes in load
without wrongly reacting to measurement noise.

5.1 Scaling using Extended Kalman Filters

The goal of our work is to minimize the amount of scaling operations, while
maintaining rapid elasticity, to avoid the cost of overly frequent scaling [68,
108, 185]. We regard each operator within a DSP separately, and measure the
amount of incoming data (data rate) and the system state, with the goal of

5.1. Scaling using Extended Kalman Filters

Figure 5.1: Sample images from the example scenario

reaching a scaling decision. This decision can be to either (a) scale out by
starting more operator instances, (b) to scale in by shutting down instances, or
(c) to remain in the same state. Each operator is executed using one or more
operator instances, determined by the scaling decision. We denote the set of
operator instances for any given operator as B, with instances b1, ba, b3, ..., by,
where n = |B|. Table 5.1 gives an overview of the notation used in this chapter.

In this scenario, the scaling decision is reached based on both intrinsic met-
rics (the system state) and extrinsic metrics (the amount of incoming data).
Together, these two data sources form a multivariate dynamic system, which
can very well be modeled using EKFs, since EKFs provide a vector-based state
and transition representation. In EKFs, multiple state variables (metrics) can
be included in the system state vector. Possible metrics include the system’s
CPU load [114], its memory utilization [68], network traffic [274], through-
put and queue sizes [98], or other metrics determining the system’s overall
performance [45].

5.1.1 Control Loop

We treat the observed operator, the rate of incoming data, and the scaling
mechanism which controls the scaling decisions of the operator, as a control
system. Our approach involves creating a closed control loop [109], a commonly
used model for scaling [178], shown in Figure 5.2. During operation, the
system (the stream processing operator) is under constant supply of input data,
measured by its rate. Since the amount of incoming data is outside of our
control, we define this as the operator’s environment'. The stream processing
operator is controlled by the scaling mechanism, being the controller in our
control loop. The controller is responsible for reaching scaling decisions, i.e.,
defining whether the operator must be scaled out, scaled in, or can remain
unchanged. During the processing of data, the operator is influencing the system
state (e.g., through CPU load or memory utilization), constituting the feedback,
which is measured by the controller. The controller therefore has two sources of

"Known as disturbance in other literature [151].

System, Feedback,
FEnvironment,
Controller

81

5. PREDICTIVE CLOUD SCALING

Table 5.1: EKF notation

Model

B Set of operator instances

bi,bo,... Individual operator instances in B
O Scale-in threshold

ot Scale-out threshold

Time Series and Filtering

T Set of all measurement times

ty,to,. .. Individual timestamps in T’

Z Time series of system state measurements
Liyy Liyy - Individual state measurements at time ¢ in Z
A(Y) Filtering (smoothing) function

Az (t) A at time ¢ based on history Z

A Filtered system state time series

VAR AR Individual filtered measurements at time ¢ in Z’
Measurements and EKF Model

Dy Data rate at time ¢

AD, Date rate change from ¢t — 1 to ¢

uy = (D, AD;) System input at time ¢

Ty System state at time ¢

5 System state estimation for time ¢, a priori
Tt System state estimation for time ¢, a posteriori
Zt Measurement (observation) at time ¢

2t Measurement estimation for time ¢

wy System noise at time ¢

Vg Measurement noise at time ¢

Q System noise covariance

R Measurement noise covariance

g, ue) State transition function

h(x) Measurement function (in our case h(x) = x)

EKF-Internal State Matrices

P; Estimation error at time ¢

F, Jacobian matrix of f(&y,us)

H, Jacobian matrix of h(Z:)

Gy Kalman gain at time ¢

Miscellaneous

N(p, 0?) Normal distribution, variance o2 around p
X7 Transpose of matrix X

X! Inverse of matrix X

82

5.1. Scaling using Extended Kalman Filters

Observation Data rate
}' 7777777777777777 Environment
¥ Scaling 4
Scaling mechanism| decisions Operator
Controller System
0 ¥
:‘ 7777777777777777 Load metrics
Measurement Feedback

Figure 5.2: Overview of the proposed approach, modeled as a control loop

AN

— Raw measurements Z
- --- Trend

Total CPU load

Time

Figure 5.3: Example of long-term load trend (dashed) and measurements (solid)

information for reaching scaling decisions: the rate of incoming data, and the
system state of the operator.

5.1.2 Filtering Model

As discussed above, we measure the system state over time, and base our scaling
decisions on the measured values. However, we employ a filtering of the raw
measurements to create a smoother version of the measurement curve.

The time series of recorded measurements of the system state is denoted as
Z. In practice, those measurements are offset from a trend by a certain noise.
This noise can have numerous causes, ranging from disturbances at the OS
level, hypervisor strategies at the VM level, or workload shared with other
applications.

All of these aspects cause the system state (e.g., CPU load or memory utilization)
to exhibit high variance. Nevertheless, a certain trend is always present, e.g.,
a highly demanding processing node will have a given baseline (trend) of load
throughout its operation. Figure 5.3 illustrates such a scenario, using the CPU
load as an example of fluctuating system state.

83

5.

PREDICTIVE CLOUD SCALING

84

/: 77777777777777777777777777777 —— Raw measurements Z
Scaling thresholds
e}
k!
=)
[al
O
E
S
Time

5/,\ \L ’ —> Scaling Operations

i A
w0
3
2 31
-
22
© 1

T 7T T T7 T X

Time

Figure 5.4: Scaling of operators according to thresholds of the actual load

If a stream processing system bases scaling decisions purely on the raw data,
an excessive amount of scaling operations may occur [68, 108, 185]. This is
illustrated in Figure 5.4, where the fluctuating CPU load measurements (top
graph) lead to 23 scaling operations, i.e., excessive scaling (bottom graph).
Our approach applies filters to this process to reduce the number of scaling
operations, i.e., to reduce the number of steps in the operators line in Figure 5.4.

Therefore, we formally define our approach as follows. We regard a history (time
series) of raw measurements, Z, at various points in time ¢ out of all measured
times T', where Z; is the measured state at time ¢, as shown in (5.2).

T = {to,t1,---,tn} (5.1)
Z=\J%Z={Z, Z1,,.... 2Z,} (5.2)
teT

Based on the raw measurements Z; € Z, we employ a filter, which we denote as
A(+), and apply this filter to each Z;, i.e., we calculate A(Z;). This application
is performed at every given measurement time ¢ and has access to all other
measurement values in Z, with the practical limitation that it can only access
past measurements. We therefore define Az(¢) as the filtered value of Z at time
t, given all other values Z; € Z where i < t. For A, various filters can be used.
In our work, we use an EKF as a smoothing filter, which we will describe in

5.1. Scaling using Extended Kalman Filters

—— Raw Measurements Z
— Filtered Values Z’
Scaling Thresholds

Total CPU Load

v

Operators

~

Time

Figure 5.5: The same scenario, with additional measurement filtering

Section 5.1.3. Other filters like Linear Smoothing (LS) [236], TVD [235], or
simpler versions of the EKF [33] are used for smoothing in literature, but in most
cases not with regard to DSP. Related work is discussed in detail in Section 5.4.

We define the set of filtered measurements Z’ as shown in (5.4).

VZy € Z: 7= Az(2) (5.3)
z'=\Jz=1{2,,.2,....2} (5.4)
te’l

Figure 5.5 shows a possible resulting graph of the same data rate measurements
as shown in Figure 5.4, using a filter, along with the resulting scaling behavior
of the system. When compared to Figure 5.4, it becomes clear that the amount
of scaling operations has decreased, and only 7 scaling operations remain.

5.1.3 Extended Kalman Filters

In the following, we describe EKFs, the type of underlying filter used in our
approach, along with the concrete state transition model.

The EKF [143] is a nonlinear generalization of the Kalman Filter (KF) [151].
Kalman-type filters work by defining models for state transitions of the system, as
well as models for the observations (measurements) of the system. While regular

85

5.

PREDICTIVE CLOUD SCALING

System

86

KFs use purely linear transition models, i.e., matrices and linear algebra, EKFs
generalize the algorithm for nonlinear models. Instead of matrices, EKFs use
functions as transition models, and require both the transition and observation
function to be point-wise differentiable.

Note that the EKF is not the only suitable model usable for forecasting multi-
variate processes. Especially in processes with a high potential for repeating
patterns, autoregressive models such as Autoregressive Moving Average (ARMA)
or Autoregressive Integrated Moving Average (ARIMA) are used [117, 253].
However, the unique advantage of EKF-based filters over models such as ARMA
or ARIMA is that with some—even inaccurate—knowledge of the underlying
system model, not only the measurements of system state are incorporated into
the solution, but also the (very accurately known) system input. At the same
time, the EKF maintains covariance matrices determining the current confidence
into each data source (both system state and input).

The first steps for defining our EKF are as follows: The system state is denoted
as z. This vector can include multiple state variables (metrics), such as CPU
and memory utilization, network traffic, throughput or queue sizes. Since the
state changes over time, we use x; to indicate the state at time ¢. Furthermore,
our system is controlled by an external input, which is the rate of data sent to
the stream processing operator. We observe both the momentary data rate at
time ¢, defined as Dy, as well as the change in data rate compared to the previous
value, ADy, with AD; = Dy — D;_1. Together, we define the input to the stream
processing operator at a given time ¢ as u; = (Dy, AD;). Since our operator
is running on a real-world computer, and therefore is subject to fluctuations
in performance, the state also encounters a particular noise. We denote this
system noise as w; for a given time t. Finally, we define our state transition
model, which models the system state x;, based on the previous system state
xi—1, the input w;—;, and the system noise wy, as shown in (5.5), where f(-)
represents the state transition function, which depends on the last state z; and
the system input u;. The system noise w;, according to the original definition
of KFs [151], is assumed to be zero-mean Gaussian noise? with the covariance
matrix @, as shown in (5.6).

xr = f(@p—1, w—1) +wy (5.5)

(0 NN(OaQ)

The state transition function f(x,u) can be chosen independently of the remain-
ing part of this state system. In our scenario, for simplicity, we use a linear
state transition function, based on the current system state z, and the input

2We discuss this assumption of zero-mean Gaussian noise for our scenario in Section 5.2.3.

5.1. Scaling using Extended Kalman Filters

u=(D,AD), defined as f(z,u) =z +a-D+b-AD. However, due to the usage
of EKF, a nonlinear state transition function could also be used if nonlinear
dynamics are known. The vector parameters a and b define the sensitivity of
the EKF to the input data rate, and must be defined according to the workload.
Currently, these parameters are determined using Ordinary Least Squares (OLS)
linear regression, but in future work, this technique can be extended to use ML.

Next, we take into account the measurement of the system state, i.e., the
feedback. There are several mechanisms for measuring system load, e.g., stand-
alone programs like top and ps, or APIs for direct measurements. The EKF
definition includes a measurement function, which we denote as h(:). This
function takes the system state x and transforms it into a measured value. This
value is again subject to noise, this time, stemming from the measurement
process itself. According to EKF terminology, we call this the measurement
noise and denote it as v;. For physical sensors, this represents a measurement
error or inaccuracy. In our scenario, this measurement error represents the
inaccuracy of measuring CPU load. The resulting measurement is denoted as
zt, and defined (5.7) where v, the measurement noise, is again assumed to be
zero-mean Gaussian noise, and its covariance matrix is assumed to be R, as
shown in (5.8).

2zt = h(x) + v (5.7)
vy ~ N (0, R) (5.8)

In contrast to physical sensors like temperature or light sensors, which often
have nonlinear characteristics, or require unit conversion, we do not need
transformations in the process of measurement. Therefore, we simply define
h(z¢) = ¢, and the resulting measurement is reduced to the term shown in (5.9).

2t = Tt + Ut (59)

Figure 5.6 gives an overview of the dynamics of the described state system.
While the input to the system (u;) is known but not controllable, the system’s
true state is hidden from the controller. This includes the noise influencing the
system state itself (w;), as well as the noise of the measurements (v;). Only the
result of the measurements (z;) is visible to the controller. As described before,
ug = (D, ADy), f is the state transition function, A is the identity function
h(xt) = z¢, we ~ N(0,Q), and vy ~ N (0, R).

Note that the general definition of EKFs allows both f(-) and @, as well as h(-),
and R to be dependent on the time ¢, i.e., the notations f(), Q¢, hi(-), and Ry

Feedback

87

5.

PREDICTIVE CLOUD SCALING

Predict Step

88

Input 3 ut 3 Ups1
Known ' | Data Rate ' | Data Rate
— — — i 4—> = | Etl SN
‘ State 1 State
System ! T v ! T v
State 3 o () — (»)
Hidden 3 Noise \L 3 Noise \L
Ut N ! v =,
Noise ! Noise
Observation 3 2t 3 241t
Visible | Load ! Load
Time ¢ | Time t + 1

Figure 5.6: State transition system used as a base model

are used, respectively. Since we use time-constant definitions for f(-), @, h(-)
and R in our approach, we drop the index ¢.

Therefore, our controller reaches scaling decisions based on the rate of incoming
data (u) and the (noisy) measurement of system state (z;). As stated in
Section 5.1.2, we do not directly use the measurement z;, but instead, use the
estimation feature of the employed EKF, which yields an estimated version of
the next system state, denoted as ;.

The nature of EKF is that it performs a continuous loop of predict-update
iterations. Given a current state, in the predict step, the EKF performs a
prediction of the next system state. In addition, the EKF also provides the
prediction error, which can be used as a metric of confidence in the predicted
value. Then, provided with a (noisy) measurement of the actual value, the EKF
recalculates its prediction error, and provides a new prediction in the update
step. As a result, the EKF is constantly correcting its prediction, provided
with noisy measurements, while maintaining a balance between inaccuracy in
measurements, as well as external disturbances. Furthermore, this process
takes into account the input of the system, i.e., control variables which are
manipulated externally. In our scenario, this is the amount of data rate and its
change, i.e., uy = (D, ADy).

At any point in time ¢, from a given previous estimated system state vector
#4_1—either the initial state (see Section 5.1.4 for a description of bootstrapping
in our approach) or the previously estimated state—and the previous system
input u;—1, the EKF derives both the estimated a priori next system state
27, the estimated next measurement Z;, and the estimation error P;, as shown
in (5.10)—(5.12), respectively. Here, F;_; is the Jacobian matrix of f, i.e., the
matrix of partial derivatives of the state transition function for the current state

5.1. Scaling using Extended Kalman Filters

and input f’(#;—1,u¢—1), P; is the prediction error (covariance matrix) at time ¢,
and @ is the covariance of the system noise as defined above. P; is computed by
applying the Jacobian matrix of the state transition matrix F' to the previous
prediction error, then re-applying its transpose F7, and finally adding the
system noise covariance). This prediction error will later be used to calculate
the Kalman gain Gy. Its definition is derived from the EKF proposal [143]. The
initialization value for Py is discussed in Section 5.1.4.

&y = f(Zi-1,u-1) (5.10)
% = h(2}) (5.11)
P=F,_ 1P F' +Q (5.12)

After a new measurement z; is taken, the EKF updates its matrices and vectors
to reflect the new data. First, the Kalman gain G; is calculated, which is used
to create the new a posteriori system state estimate Z;. Note that the difference
between the a priori estimate 27 and the a posteriori state estimate 2 is that
the a posteriori state incorporates the new measurement (and therefore, new
knowledge) into the value provided by the a priori state before the measurement.

The update step for the Kalman gain G; and the estimation of the next system
state &y is shown in (5.13) and (5.14), respectively, where H is the Jacobian
matrix of h, i.e., the matrix of partial derivatives of the measurement function
for the current measurement h’(#;), and R is the covariance of the measurement
noise as defined above. Again, this definition is derived from the original work
in [143]. The Kalman gain G; is used in the estimation of the next system state
#; and represents the (estimated) influence of the change in measurement on
the actual system state.

Gi=P,H'(HP,HT + R)™! (5.13)
Ty = .’f}': + Gt(zt — ét) (514)

Revisiting Section 5.1.2, we are now able to define the filtered version of z;, i.e.,
Z] = Az(t), by using the cumulative output of the EKF estimations for each
operator instance, as shown in (5.15), where B, as defined at the beginning of
Section 5.1, is the set of all operator instances for the operator type taken into
account, b € B denotes the iteration over all operator instances, and i’? denotes
the EKF estimation & at time ¢ for the operator instance b.

Zy=Xz(z) = Y & (5.15)
beB

Update Step

89

5.

PREDICTIVE CLOUD SCALING

90

5.1.4 Bootstrapping

First, the EKF must be initialized. Since especially at the beginning of the
lifetime of an operator, a certain amount of time must be chosen in order for
the operator to stabilize, we propose a simple bootstrapping process. In our
work, we distinguish between a cold start and a warm start. If the operator
has never been executed before, and therefore its behavior is unknown, a cold
start is executed, and a default number of instances is initiated. In our current
implementation, this default number is set to one, i.e., if the system has no
knowledge about the operator, a single instance of it is spun up. In case the
system has already used this operator before, and data about its behavior has
been collected, we execute a warm start, and use the average number of instances
of the operator used in the last run. This is done to use a value as close to the
likely required scale as possible during the bootstrapping process.

After the initiation of the operator instances, we begin a two-step parameter
bootstrapping. First, a dead time is implemented, during which no scaling
decisions are made, and only measurements of the input data rate (u;) and
the system state (z;) are taken and collected. After the dead time, the EKF is
initialized with the following parameters.

Measurement noise covariance matrix R: Since we cannot distinguish be-
tween measurement noise and system noise just by measuring the system
state (z;), we use calibration measurements using FakeLoad [237], a ded-
icated load generator. Given a relatively noiseless load generation, all
measured variance represents measurement noise and constitutes R.

Initial state estimation Zy: To initialize the state estimation, we use a simple
weighted average of the measurements of system state (z;) during the dead
time. We weight the system state measurements by recentness, where each
weight is indirectly proportional to its age, as shown in (5.16), where n is
the number of z measurements, z; is the ™ measurement and A,, is the
n*® triangular number?.

LI
.%0 = Z — Z; (516)
=1 A”

Initial state estimation covariance matrix Fy: This parameter determines
the covariance of the prediction, i.e., gives a measurement of the confidence
in the estimation of the initial system state Zg. Since we derive Zg from a
weighted mean of measurements of z; during the dead time, we use the

n

*Triangular numbers are defined as A, =Y "_ .

5.1. Scaling using Extended Kalman Filters

same technique to derive Py, as shown in (5.17), where A,, — 1 represents
Bessel’s correction for an unbiased estimator of covariance [218].

n i .
P() = ; An 1 (Z, — 1‘0)2 (5.17)

System noise covariance (): For the system noise covariance, we use the
same value as for Py, but reduced by the previously determined measure-
ment noise, as shown in (5.18), where we assume that Py > R always
holds. The rationale behind this is that Py, stemming from the observa-
tion during the dead time, should reflect both the system noise (@) and
the measurement noise (R). Note that while () and R are constant in
our approach, P; is adapted by the EKF over time, so the relationship
@ = P, — R only holds for t = 0. Afterwards, during the course of the
operation of the EKF, as the EKF converges [143], P decreases over time.

Q=P -R (5.18)

After the dead time, we define an ease-in time, during which the EKF is
executed, but its estimates are not yet used. Only after this second phase of
the bootstrapping process, the EKF estimates are used for scaling decisions.
The time durations used for both the dead time and the ease-in time are
parameterizable. In our preliminary experiments, we have found that 10 seconds
are sufficient for both parameters.

5.1.5 Approach Analysis

We assume that the metrics selected for scaling (contained in the vector z;)
are decided in advance. For instance, in our evaluation in Section 5.2, we use
CPU and memory utilization. Furthermore, we assume that the input to the
system (uy), is also defined in advance. In our evaluation, D and AD constitute
this input. The measurements z; are assumed to be performed with a certain
accuracy, defined by a zero-mean Gaussian noise with covariance R. We show in
Section 5.1.4 how to determine this parameter, and evaluate this in Section 5.2.3.
Furthermore, the input transition function f constitutes a parameter of our
approach. In our evaluation, we use the linear function z +a- D +b-AD, where
a and b are parameters determining the sensitivity of the EKF-based filter to the
input data rate. Finally, the state x; itself is assumed to be subject to zero-mean
Gaussian system noise with covariance (). Like R,) constitutes a parameter,
and in Section 5.1.4, we show how to determine its value. Finally, the duration
of both the dead time and the ease-in time, also described in Section 5.1.4,
constitute parameters relevant to the bootstrapping process.

Parameters

91

5.

PREDICTIVE CLOUD SCALING

Time and Space
Complexity

92

In the following, n denotes the number of elements of the system state vector
x, and m denotes the number of elements in the measurement vector z. An
EKF iteration (predict-update) is required every time new measurements are
available. We use a measurement frequency of 2 Hz to remain well below the time
required to spin up operator instances, and provide the EKF with sufficiently
frequent data. The predict step, shown in (5.10)—(5.12), entails the application
of f (an m X n operation), the estimation of z using h (an n x n operation),
and the calculation of P, (multiple n x n operations). The update step, shown
in (5.13)—(5.14), consists of the calculation of the Kalman gain G (one 1 x n
and multiple n X n operations), and the estimation of the new system state
Z¢, consisting of two 1 x n and one n x n operation. In summary, the EKF
computation time is in O(n%m).

With regard to space, EKFs have the benefit of not keeping history, and therefore
the EKF state size is constant over time. It consists of the two state estimation
vectors #;* and #; (cardinality n), the measurement estimation vector 2 (cardi-
nality m), and the matrices P and G (cardinality n x n). Overall, the space
required for the EKF is in O(n? + m).

5.2 Evaluation

We perform a series of experiments to evaluate our solution. In the following,
we describe the testbed, the experimental workload, and our evaluation method.

5.2.1 Experimental Testbed

As outlined in detail in Section 5.2.2, the experiments involve the parallel stream
processing of large amounts of images using a private cloud platform. This
platform is an OpenStack instance using Kernel-Based Virtual Machines (KVM)
running on eight nodes, each with four Intel Xeon E3-1230 v6 CPU cores. In
total, 128 GB of memory are available. The DSP operator instances consist of
Java applications created for this experiment, using ImageJ*. The system of
operator instances constitutes our experimental DSP platform.

Operator instances are executed on VMs, where each VM is exclusively as-
signed one physical core in order to avoid tainting the measured data with
adverse artifacts stemming from memory caching, CPU scheduling, and context
switches. Depending on the scaling decision, we either spin up additional VMs
with new operator instances, or spin down VMs. In this evaluation, we only
regard one operator type, with potentially multiple operator instances. We use
stateful operator instances, therefore, state must be managed during scaling (see
Section 5.2.2). Including both VM boot time and state transfer, preliminary
experiments have shown that an operator instance takes between 5 and 25

‘https://imagej.nih.gov/i7j/

https://imagej.nih.gov/ij/

5.2. Evaluation

seconds to be ready. Once available, running operator instances are supplied
with images on a round-robin basis from an input queue. While the input queue
serves data to the operator instances in First In, First Out (FIFO) order, overall,
FIFO order is not guaranteed, since instances might process data at different
speeds. We perform no re-synchronization after processing, as our workload
processes images individually.

5.2.2 Workload

For our workload, we use images submitted to the DSP for processing, which
is a well-known DSP use case, e.g., [271], as well as queries for certain pixel
metrics gathered during the stream processing of the images.

We vary the amount of images submitted to a given operator according to
patterns in three distinct workload scenarios. As described in detail in the
example scenario for this chapter, the images processed are taken from a real-
world biomedical engineering use case [137]. Images of biological cells, obtained
from tissue samples and taken using fluorescence microscopy, are analyzed for
certain properties. Each image has around 1.7 megapixels, is originally in Tagged
Image File Format (TIFF) format, and around 1.3 MB in size.

Furthermore, each image is given Cartesian (X/Y) coordinates determining its
position within the overall tissue sample. It is the task of the operators to apply
a set of image filters (Gaussian blur, split into RGB channels, edge detection,
and object count). In the real-world use case, these filters are used to count
biological cells with a given fluorescent marker.

With an average rate of 1 per 100 images, we also submit queries, where details
about pixel intensities regarding a randomly chosen X /Y position in the last
1000 images are requested from the operator. The query consists of the X/Y
position, and the return value is a vector containing the last 1000 pixel intensities.
This is done to calculate the distribution of pixel intensities for a specific pixel,
allowing to assess the significance of this particular X/Y position for the overall
result. Therefore, the operator is required to maintain state containing this
information, namely a sliding window of length 1000 (count-based, slide of 1).

Furthermore, when scaling out and in, operator instances are made responsible
for a given region within the X/Y plane of the overall cell tissue. For this, the
plane is split into equal parts, and each operator instance is assigned one of these
parts (i.e., sharding by Cartesian coordinates). Therefore, each scaling operation
involves migration of state between operator instances. For the sake of evaluation
simplicity, we assume no failures (lost state or intermittent disconnection).

We impose SLA limitations for both the processing of the images, as well as the
queries. The SLA for images is a maximum processing time of 5 seconds, while
the SLA limitation for queries is one second. Any processing duration in excess
of these deadlines poses a SLA violation.

DSP Operators

Queries

SLA Limitations

93

5.

PREDICTIVE CLOUD SCALING

94

©
o

i —— Pyramid - Square --- Lab

(=]
o

Input Workload [images/s|
) .
S S
I

e ! el el 0
00 200 400 600 800 1,000

Time [s]

Figure 5.7: Excerpt of the workload scenarios used in the evaluation

The workload is varied according to three different scenarios:

Pyramid: This scenario is generated synthetically using a step-wise increase

of the amount of images submitted to the operator input queue, followed
by a likewise reduction of this amount, and a repetition of this process for
the entire duration of the simulation run. This generates a pyramid-like
data rate pattern.

In this work, we use 0 and 60 as the minimum and maximum amount of
images per second, respectively. The increase per step is 15 images per
second, and each level is held for 130 seconds. These values are chosen to
create an easily measureable pattern of usage, while using data rates and
timings similar to the real data trace (Lab) described below.

Square: Another synthetic pattern is generated by alternating between a low

Lab:

amount of images, and a high amount of images per second used for input
to the operator. In this work, we use 1 and 65 as the minimum and
maximum amount of images, perform instant changes to the data rate,
and hold both values, i.e., 1 and 65, for 370 seconds. This pattern allows
us to analyze the impact of very sudden changes in workload on the filters.

This scenario stems from the used dataset and represents the amount
of data processed in the lab. It is not synthesized, but represents real-
world observation of the amount of recorded images. This real-life pattern
contains both rapid and smooth changes and allows us to measure the
behavior of our solution in a usage pattern close to a real-world scenario.

Figure 5.7 shows an excerpt of the input workload pattern for all three scenarios.
We use the first two scenarios, i.e., the synthetic patterns Pyramid and Square,
to analyze in detail the performance of our algorithm in extreme cases, such as
the rapid increase or decrease of arriving data. We then additionally use the
third scenario, i.e., the Lab scenario, to verify applicability in a real-world setup.

5.2. Evaluation

5.2.3 Evaluation Methodology

We perform the experiment in various configurations, and repeat each configura-
tion 20 times (20 runs). An average of the measured values is recorded together
with the standard deviation o. One run lasts 2700 seconds (45 minutes).

We use three filters in our experiments, consisting of the presented EKF-based
approach (denoted as EKF) and two baselines for comparison (denoted as PURE
and GW). The PURE filter is the identity function, i.e., no value filtering is
used. The GW filter uses the Generalized Weierstrass (GW) transform. The
GW transform adds the variance parameter ¢ to the standard Weierstrass trans-
form [272]. This parameter influences the radius (variation) of the smoothing
effect provided by the Gaussian kernel. The kernel used in the convolution is
shown in (5.19), where x represents the time ordinate and ¢ denotes the variance.
This notion is in line with existing literature [272].

1 «?

e 2t 5.19
v 27t ()

For the implementation, we use a rectangle window function. Due to the low
measurement frequency compared to the computational capacity (2 Hz), a
sufficiently large window size is feasible and has no significant impact on the
result, since the weights for very old measurements are marginally low. We use
a window size of 1 minute.

The parameter ¢ is dependent on the system used, and is best set to a value
allowing for sufficient smoothing while minimizing the delay of edge detection. In
the frequency domain of the Fourier analysis of our data, no signal distinguishable
from noise is present above 0.3 Hz. We therefore set ¢t = 3% = 9, i.e., the
wavelength for 0.3 Hz in seconds, squared for variance. A discussion of Gaussian
kernels and their usage within signal processing can be found in [176].

Since we perform the filtering live and cannot access future values for our
calculation, only the left side of the symmetrical kernel is in effect, denoted by
the range = < 0 and containing past measurements.

A major flaw of all algorithms using linear smoothing methods such as Gaussian-
type transforms like the GW transform is the fact that due to the averaging
performed in these algorithms, they also smooth out edges in the signal. In elastic
stream processing, this means that changes in the data rate are not detected
immediately, and thus scaling operations are delayed by design. Furthermore,
such algorithms only provide decisions whether to scale out or in, while the
EKF also indicates how many additional instances are required. This is due to
the inclusion of extrinsic metrics by the EKF, such as the input data rate.

All filters used in the evaluation, i.e., PURE, GW, and EKF, are presented
with measurements of the system state. In our scenario, we measure the

Filters

95

5.

PREDICTIVE CLOUD SCALING

Scaling Thresholds
Sensitivity Analysis

CPU Measurement
Noise Analysis

96

Table 5.2: Sensitivity analysis for @~ and ©7, best result underlined

o+
50% 60% 70% 80% 90% 100%

40% | 65,144 63,596 63,554 61,160 69,434 67,850

50% 63,632 61,484 60,056 62,450 67,244
o 60% 61,370 65,000 65,678 69,098
70% 67,628 69,668 75,818
80% 79,508 80,168
90% 79,154

CPU and memory utilization, however, the approach is generally applicable to
any (numeric) metrics. The filtered version of the measurements, reflecting the
approximated internal system state, is then used to reach scaling decisions. We
use threshold-based scaling to evaluate both filters, a technique commonly used
in literature [59, 131, 193]. Scaling is performed based on the average value of all
operator instances, taking into account every metric. Scaling out is performed
if at least one metric is above the scale-out threshold. Scaling in is performed if
all metrics are below the scale-in threshold. This is used to avoid bottlenecks
stemming from single metrics.

We therefore define two thresholds, ©~, representing the scale-in threshold,
and ©T, representing the scale-out threshold. There are various means of
choosing thresholds, including automatic learning of parameters. Such learning
is not within the scope of this work, but existing techniques, e.g., [189], could
be integrated into our approach. Instead, we perform a 20-fold sensitivity
analysis to identify both thresholds. The sensitivity analysis is performed for
all filters (PURE, EKF, GW) using the three evaluation scenarios (Pyramid,
Square, Lab), thus covering the entire parameter domain of this evaluation.
Only meaningful values for ©~ and ©T, i.e., O~ < O are used. For all
threshold combinations, we measure the resulting amount of SLA violations.
Table 5.2 shows the resulting average numbers of SLA violations for all filters
and scenarios. All standard deviation values o are below 100 and are not
shown. We observe that ©F = 80% consistently provides the optimal results.
Furthermore, ©~ = 50% provides the optimal results, however, with all three
filters, ©~ = 40% is a close runner-up, and we therefore choose ©~ = 45% for
our evaluation. Similar values are used in existing literature [116, 154].

In addition, we provide experimental verification for the assumption proposed
in Section 5.1.3, according to which the measurement noise of CPU load follows
a zero-mean Gaussian distribution. By using FakeLoad [237] in preliminary
experiments, we verify that the variance of the measurement is indeed distributed
in a sufficiently uniform manner. We perform a 20-fold sensitivity analysis,
and while the measured o does vary, the skew we encounter is not significant

5.3. Experiments and Results

® Desired Mean -+ Measured Mean —— Measured o

100 T T T T T T T T T
S .
= 80 [e 1
& o
=
g 60 e i
)
= .
5 40 Q |
S B |
z 2 i
O ..

0 T | \ — \ 1 I \ \

0 10 20 30 40 50 60 70 80 90 100
CPU Load Introduced [%]

Figure 5.8: CPU load measurement noise analysis

to our evaluation. Figure 5.8 shows the mean data of these measurements.
Measurements for memory utilization show almost no measurement noise.

5.3 Experiments and Results

As described in Section 5.2, we evaluate our approach using a total of nine
experiment configurations (three filters, three workload scenarios). Each config-
uration is executed 20 times, and each run lasts 45 minutes. In total, 135 hours
of execution time are required for our scenarios.

During the experiments, we record the operators’ CPU and memory utilization,
the amount of running VMs, the image processing durations, and the SLA
violations (see Section 5.2.2). For these metrics, we use the average of all 20 runs
for each configuration in order to smooth out measurement noise introduced by
the experimentation testbed.

We show an example of individual runs to demonstrate the overall functionality
of our evaluation approach in Section 5.3.1. In Section 5.3.2, we present the
aggregate results of our experiment runs. We discuss the results in Section 5.3.3.

5.3.1 Exemplary Runs

We first show results from excerpts of individual results, in order to demonstrate
the functionality of our EKF approach and its effects on the scaling behavior of
the system. Figure 5.9 shows an excerpt of three experiment runs. All three
runs use the Pyramid workload scenario, and apply either the PURE, GW, or
EKF filter. For all three runs, we show the resulting amount of running VMs
on the left ordinate. Additionally, for reference, we show the input workload (in

97

5. PREDICTIVE CLOUD SCALING

30 T T T I L ! ! 120
‘ ~ PURE — GW —— EKF ------ Input ‘ —
25 |- | %
"%)D
Z 20| ®E
> I HﬂTJ‘U‘II'L T
[Ty F
bgo 151 5
g E E
E ! e =

1 | (s
= 10 [T ° 2
: ERERR 2
s T]
il | | | . ; ‘ ‘ ‘ —0
200 300 400 500 600 700 800 900 1,000

Time [s]

Figure 5.9: Running VMs in the Pyramid experiment (left ordinate), and input
load (right ordinate)

‘ Measured — EKF ------ Input ‘
1.25 |5 12

g 5
£ 1f 1100 £
g o
o0) 175 %
g e
S 1 bl '—g
5 05f 150 2
5 5
= 025 425 &
< E

S I I I 3
200 300 400 500 600 700 800 900 1,000 0

Time s

Figure 5.10: Average CPU load in the Pyramid experiment (left ordinate), and
input load (right ordinate)

images per second) on the right ordinate. The input workload clearly shows the
pyramid-like pattern described in Section 5.2.2.

We make the following observations during the analysis of this excerpt:

e GW shows the anticipated delay in reaction (e.g., around ¢ = 200, ¢t = 300,
t = 410), which is due to the fact that GW can only provide scale-out or
scale-in instructions, but cannot dictate how many VMs are to be spun
up or down. Since PURE reacts to changes directly, such delay is not
observed for PURE.

e PURE shows excessive scaling operations, reflected in variation of VM
count, which is due to the relatively high fluctuation of measurements.
GW also suffers from such fluctuations, albeit to a lesser degree.

98

5.3. Experiments and Results

o GW suffers from overshoot when transitioning from a no-load to a load
condition (seen around ¢ = 220). This is again due to the fact that GW
only gives a scale-out response if ©F is exceeded by any metric. As VMs
are spun up, ©1 remains exceeded, and especially in the initial start of
load (¢ = 170), this causes overshoot.

e EKF shows numerous spikes, where an excessive number of VMs is acti-
vated for a load increase. While these spikes are unfavorable, their amount
is negligible compared to the frequent scaling of GW and PURE. Further
fine-tuning of the state transition function could be used to further reduce
these artifacts.

e The crucial advantage of EKF, its potential to not only provide scale-out
and scale-in instructions, but also to dictate how many VMs are required
to be spun up or down, can be observed. The EKF VM amount, once
settled, remains mostly stable.

e EKF, similarly to GW, also exhibits a minor amount of fluctuation when
transitioning from a no-load to a load condition. Several scale-out and
also some scale-in operations take place around ¢ = 170.

e However, EKF settles in a significantly more stable way, and seldom
requires correction; an example for this can be seen around ¢ = 880. While
EKF also shows visible overshoot, this overshoot is minor, and is corrected
very soon.

e [t is visible that EKF often uses more VMs than GW and PURE, which is
caused by its parameters a and b, i.e., the sensitivity to the input data rate.
As we see later in Section 5.3.2, while this effect causes more immediate cost
due to an increase of VM time required, it leads to substantial reduction
of SLA violations and total processing time.

e GW and EKF cause the system to react in an asymmetrical way when
considering scale-out and scale-in operations. This is visible when observing
the first reduction of workload around ¢t = 650. In both cases, the system
does not start scaling in until the next workload reduction. This behavior
is due to the nature of threshold-based scaling, where a given demand can
have multiple different scales while keeping the system load within the
thresholds.

e PURE does not exhibit this asymmetry, which we attribute to its frequent
scaling operations. PURE is therefore more likely to traverse across its
thresholds and does not “linger” in a scaled-out state.

In Figure 5.10, we study in detail the behavior of EKF during the run shown in
Figure 5.9. Since during most of the experiments, the CPU load was the factor

99

5.

PREDICTIVE CLOUD SCALING

100

limiting scaling operations, we focus on this metric in this analysis. On the left
ordinate, we show the measured CPU load, and the EKF-filtered measurement.
Both of these numbers are represented averaged over all operator instances. In
addition, like in Figure 5.9, for reference, we show the input workload on the
right ordinate.

Here, we make the following observations:

e Generally, EKF provides the expected smoothing of measurements.

o While mostly ignoring noise, EKF reacts promptly to changes caused by
actual workload increase. In some situations, EKF yields values larger
than 1.0, which, in addition to the scale-out decision itself, provides an
indication of how many more instances are required.

e We see that the correction around ¢ = 880, mentioned in the previous
findings, is due the load being close to ©T after the workload decrease at
t = 800, and finally reaching ©" at t = 880, where the aforementioned
correction takes place, scale-out is performed, and the average load drops
again until ¢ = 920.

Summarizing the findings from the exemplary runs, we confirm that the EKF-
based filter is working as intended, and the results are qualitatively consistent
with the expectations. While naturally the performance of GW could be further
increased, especially the low-amplitude fluctuations could be further reduced
by fine-tuning parameters, the overall aspects—that is, the delayed response,
overshoot, and overall fluctuation of GW—remain.

5.3.2 Aggregate Results

In this section, we present the overall results of our experiments, averaged
over 20 runs. We measure the total VM time consumed (measured per second,
expressed in hours), the amount of scaling events, the average processing time
for images and state queries, and the amount of SLA violations.

Tables 5.3, 5.4, and 5.5 show the results for Pyramid, Square, and Lab, respec-
tively. Since we cannot assume equal variances, we use Welch’s t-tests [262]
for determining statistical significance. We perform a test for each pair of
values measured using PURE, GW, and EKF. We can reject Hy (i.e., claim
significance) for all value pairs except the total VM time using Square with
GW and EKF (Table 5.4, first row, GW and EKF), where we cannot reject
Hy. The p-value is 0.1092, i.e., rejecting Hy would yield a 10.92% likelihood
of a type I error. For all other tests, where we can reject Hy, the p-values are
less than 0.004. Therefore, the following observations are based on statistically
significant results.

5.3. Experiments and Results

Table 5.3: Aggregate results for the Pyramid scenario, lowest results underlined

Metric PURE (6) GW (o) EKEF (o)
Total VM Time [1000 h] 8.0 02) 8.4 (02 89 (0.3)
Scaling Events 420.6 (11.5) 304.6 (10.5) 58.5 (8.5)
Image Processing Time [s] 2.7 (01) 2.1 02 1.5 @07
Query Processing Time [s] 0.6 0.1) 0.5 (1) 0.3 (0.2
SLA Violations [1000] 53.8 (0.5) 51.7 (0.7) 47.1 (1.3)

Table 5.4: Aggregate results for the Square scenario, lowest results underlined

Metric PURE (6) GW (o) EKEF (o)

Total VM Time [1000 h] 8.6 (02) 9.0 (0.2) 9.2 (0.5)
Scaling Events 326.1 (3.3) 294.2 (2.4) 28.5 (13.5)
Image Processing Time [s] 4.6 (01) 3.9 (02 1.8 (0.1)
Query Processing Time [s] 0.9 0.1) 0.8 @1 0.3 (1)
SLA Violations [1000] 63.2 (0.4) 63.9 (0.2) 47.6 (2.6)

Table 5.5: Aggregate results for the Lab scenario, lowest results are underlined

Metric PURE (¢) GW (o) EKF (o)
Total VM Time [1000 h] 9.9 (02) 10.6 (0.4) 12.1 (1.0)
Scaling Events 423.45 (12.6) 288.0 (18.2) 54.6 (4.2)
Image Processing Time [s] 3.0 1) 2701 1.6 (0.4
Query Processing Time [s] 0.8 (0.1) 0.5 (0.1) 0.3 (0.1)
SLA Violations [1000] 69.9 (0.9) 67.0 (0.9) 63.8 (3.6)

We note that the standard deviations of all measurements are relatively low (re-
flected in the fact that all p-values except one are below 0.004), which indicates
consistency in our experimental testbed. While the order of standard deviations
varies from scenario to scenario (e.g., for the amount of scaling events recorded),
due to low standard deviation, this does not pose a risk to our evaluation.

Comparing the measured numbers themselves (i.e., the means), we observe that
all scenarios show consistent results. EKF performs best for all metrics except
the total VM time consumed. This means that EKF provides a reduction of
scaling events, a decreased workload processing time, and less SLA violations,
at the cost of VM time. We provide a detailed break-even analysis for this
trade-off in Section 5.3.3.

For all metrics, the order between PURE, GW, and EKF is consistent for
all scenarios, i.e., GW values are always between PURE and EKF. The only
exception is the number of SLA violations in the Square scenario, shown below.

Standard Deviation,
Mean Values

101

5.

PREDICTIVE CLOUD SCALING

Relative Changes

102

When analyzing percental changes for a metric, we provide the change of
EKF compared to GW, followed by the change of EKF compared to PURE
in parentheses. For instance, a reduction of scaling events of 80.1% (86.1%)
denotes that EKF provides a 80.1% reduction of events compared to GW, and
a 86.1% reduction compared to PURE.

In all three scenarios, the total VM time is the highest for EKF, and the lowest
for PURE. The effect is strongest in the Lab scenario, where the increase is
14.1% (22.2%), followed by Pyramid, where the increase is 6.0% (11.3%). The
lowest increase, 2.2% (7.0%), is seen for Square. This indicates that abrupt,
step-wise changes, followed by constant load, as present in Pyramid and even
more extremely in Square, work in favor of EKF, while lower, constant changes
in workload increase the additional VM time consumed by EKF. In total, EKF
causes an increased VM time of 7.8% (13.9%).

The amount of scaling events is drastically lower for EKF in all scenarios.
For Pyramid, EKF reduces scaling events by 80.1% (86.1%). For Square, the
reduction is 90.8% (91.3%), and for Lab it is 81.0% (87.1%). Again, Square
causes EKF to have the strongest effect, however, also the lowest change of
80.1% for Pyramid is drastic. In total, EKF causes a decrease in amount of
scaling events by 84.0% (87.9%).

The image and query processing times are also lowered by EKF, with a higher
impact seen for image processing times. The following figures describe the
processing times of all operations, i.e., image processing and state queries. For
Pyramid, the decrease of processing time is 28.6% (44.5%). For Square, the
decrease is 53.9% (60.9%). For Lab, it is 40.7% (46.7%). Therefore, in the case
of processing times, the effect of rapid changes does not seem to have an impact
comparable with the previously discussed metrics. In total, operation time is
decreased by 43.7% (52.4%).

Finally, we inspect the impact of EKF on the amount of SLA violations. The
reduction caused by EKF for Pyramid is 8.9% (12.5%), the reduction for Square
is 25.5% (24.7%), and for Lab, it is 4.8% (8.7%). The total reduction of violations
is 13.2% (15.2%). Here, again, the highest reduction is seen for Square, indicating
an impact of rapid changes on the reduction of SLA violations by EKF.

5.3.3 Discussion and Cost Analysis

In the results presented above, we show that using EKF reduces three met-
rics (scaling events, processing time, and SLA violations), but increases the total
VM time consumed. While the reductions provided are substantial, especially
with regard to the processing times and the amount of scaling events, the
increase of VM time implies a trade-off between increased VM time on the one
hand, and a reduction of the remaining metrics on the other hand.

5.3. Experiments and Results

Cloud providers currently do not charge for spin-up and spin-down of machines.
Therefore, the scaling events cannot be assumed to cause direct cost but never-
theless lead to higher processing times. In fact, increased processing time usually
implies increased cost, either by reducing overall revenue, or by incurring SLA
violation penalties.

We recall the total increase of 7.8% of VM time, and the reduction of SLA
violations by 13.2%, compared to GW. We assume cost of ¢, per VM hour, and
cost of ¢s per SLA violation (i.e., penalty), and formulate the inequation shown
in (5.20), stating that the cost caused by additional VM time must be lower
than the cost saved by reducing SLA violations.

1.078 ¢, < 1.132¢, (5.20)

From this, we can deduce the inequation shown in (5.21), denoting that the
break-even point for EKF is when VM hours are less expensive than SLA
violations, with an additional margin of 5%. At the time of performing this
evaluation (December 2018), the Google Cloud Platform price for one core
hour (Frankfurt) is $0.0612. Assuming this price, EKF is profitable if the SLA
violation penalty is more than $0.059 per violating image or query.

o < 1.05 ¢, (5.21)

Alternatively, we calculate the break-even point comparing VM hours to oper-
ation processing times. We recall the reduction of processing time by 43.7%,
compared to GW. This results in an increase of ﬁ = 1.776, i.e., by 77.6% of
processed operations. Again assuming cost of ¢, per VM hour, and revenue of r,
per processed operation, we formulate the inequation shown in (5.23), denoting
the break-even point for EKF compared to GW. We see that EKF reduces cost
if the cost for one VM hour is less than the revenue per operation by a factor of
1.6475. Assuming again $0.0612 per VM hour, EKF is profitable if the revenue
per processed element is higher than $0.038.

1.078 ¢, < 1.776 1 (5.22)
¢y < 1.647571), (5.23)

Based on our experiments, we have shown realistic break-even points for EKF
compared to GW, providing a cost-efficient operating range with regard to VM
hour cost, SLA violation penalties and operation processing revenue. We use two
types of workload in this evaluation. Additional types or complexities of queries
could be used, but, depending on their exact form, might require additional
metrics to be added to the system state described in Section 5.2.3.

VM Cost versus
SLA Cost

VM Cost versus
Operation Revenue

103

5.

PREDICTIVE CLOUD SCALING

Scaling Overhead

Scaling in DSP

104

Summarizing our evaluation results, we see that using EKF-based filtering has
numerous benefits. Since the EKF includes extrinsic metrics, an estimation of
the number of additional VMs is provided, instead of just scale-out or scale-in
decisions. This leads to more accurate and less frequent scaling operations, to a
considerable reduction of processing time, and to a decrease of SLA violations.

5.4 Related Work

In this section, we discuss the state of the art with respect to our fundamental
assumptions in general, regarding existing approaches to scaling in DSP systems,
including time series analysis and filtering,

As a fundamental assumption for our work, we state that computational overhead
caused by scaling induces significant cost. The impact of overhead from scaling
of cloud resources has been studied by Corradi et al. [68] (in the context of
overhead within cloud data centers) and by Mao et al. [185] (in the context
of auto-scaling in cloud workflows). The common result is that indeed, such
overhead has significant impact and should be kept to a minimum. In other
literature, focus is put on overhead caused not by the scaling itself, but by the
decision-making. Computational effort required to solve optimization problems
can become quite high [74, 256], especially when using techniques such as
MILP [180]. This complexity is somewhat reduced when dealing with ML
techniques such as ANNs [140, 204]. As we show in Section 5.1.5, EKF incurs
relatively low computational overhead.

Next, we consider scaling in DSP systems, a topic thoroughly researched and
surveyed in the literature. Work by Mencagli et al. [193] uses the Model-based
Predictive Control (MPC) technique to create a trade-off between reconfigura-
tion stability and amplitude. While the context (DSP) is the same, and the
aim (reduction of reconfiguration overhead) is similar to ours (reduction of the
amount of scaling operations), the authors focus on the use of a distributed and
cooperative approach, while we focus on the usage of multiple data sources and
reduction of noise.

Floratou et al. [98] propose Dhalion, a self-healing and self-regulating extension
for streaming systems, and implement it on top of Twitter Heron. The authors
present a framework where metrics are used to detect certain symptoms of
declining system health. Dhalion then automatically uses diagnosers to determine
possible reasons (diagnoses) for decline in system health, and invokes resolvers
to attempt to bring the system back to health. Dhalion features self-monitoring
by checking whether actions taken have indeed resolved a symptom, and uses a
learning mechanism to blacklist resolutions not contributing to the symptom’s
resolution. The EKF-based filtering presented in this chapter can be used in
combination with Dhalion.

5.4. Related Work

Abadi et al. [2] present the Borealis DSP engine, along with a flexible and
QoS-based optimization model. However, while certain intrinsic values are
measured (e.g., CPU, disk), the scaling mechanisms presented do not take into
account extrinsic metrics such as the rate of input data. No detailed information

is given about whether pre-processing of recorded data (e.g., de-noising) is used.

The usage of input data rate for scaling decisions has repeatedly been considered
in literature [129, 156, 269], as was using threshold-based systems to reach scaling
decisions [59, 131]. All of those approaches, however, suffer from the overhead
problem described in the introduction to this chapter. Some research has been

conducted specifically to tackle this problem of overhead due to volatile input.

A general recommendation is the usage of low-pass filters [68]. Another example
of linear filters is found in the work by Gong et al. [108], where scaling decisions
are based on a Fast Fourier Transform (FFT) and pattern recognition. To avoid
overhead cost, the authors use a delayed scaling mechanism, i.e., hysteresis. In
contrast to the work at hand, Gong et al. do not include extrinsic (environment)
metrics, such as the input data rate. Instead, only hysteresis is used to perform
smoothing of metrics. The filtering presented in our work can therefore be used
as a stage prior to the scaling mechanism presented by Gong et al.

In our work, we use time series analysis, which is often used for scaling in
literature [178]. For instance, this is achieved by creating an auto-scaling
algorithm using pattern matching [58], or using wavelet analysis [204]. This is
complimented by either using ANNs for proactive and predictive analysis [140,
204], or reinforcement learning [82]. As an interesting approach, a combination
of predictive and reactive approaches has been used in [101]. Predictive elements
are used for coarse, long-term time scales, while reactive provisioning handles
fine-grained, short-term peaks. However, none of these approaches use extrinsic
metrics as a data source for reaching scaling decisions.

To the best of our knowledge, apart from our own preliminary work [33], where
we outline two approaches extending simple threshold-based scaling, EKF and
TVD, only the approach by Gandhi et al. [102] takes into account EKF for
resource scaling. In their study, Gandhi et al. propose a performance model
using queuing-theoretic principles to predict the trade-off of various scaling
decisions. While our approach is situated in the domain of DSP, the authors
focus on scaling in cloud computing. The authors employ EKF-based filtering

to dynamically infer system parameters required by the performance model.
The experimental evaluation is similar to the one presented in Section 5.2.

Furthermore, the authors’ approach uses EKF to increase robustness, which is
also comparable to our approach, albeit in the case of the study by Gandhi et al.,
the robustness is sought against inaccuracies from the model-driven approach,
while in our case, EKF is used to reduce noise stemming from inaccuracies
originating in the measurement itself.

Input Data Rate

Time Series Analysis

105

5.

PREDICTIVE CLOUD SCALING

106

5.5 Summary

In this chapter, we have proposed EKF-based filtering for scaling in DSP systems,
to reduce the amount of scaling operations and cost caused by SLA violations.

We presented a model in which a time series of measurements of system state
is filtered using EKF, and provided details to the application of EKF. We
created a system capable of unifying intrinsic measurements (e.g., CPU and
memory utilization) with extrinsic measurements (e.g., incoming data rate). The
resulting filter quickly reacts to changes in the environment, while minimizing
sensitivity to both process and measurement noise. We utilized these filtered
values to reach scaling decisions.

We have evaluated our work using a real-world dataset and workload to run
experiments, both showing the characteristics of individuals runs, and comparing
aggregated numbers to two baselines. While the VM time increased by up to
13.9%, we see an overall reduction of the number of scaling events by up to 87.9%,
a reduction of processing time by up to 52.4%, and a decrease in SLA violations
by up to 15.2%.

CHAPTER

Deterministic Contests in
Blockchain Transactions

The approaches presented in the previous chapters all rely on data in the form
of measurements for predicting a certain outcome, e.g., by using past system
load measurements to predict future system load. However, such approaches are
not applicable in situations where data is missing or insufficient. In this chapter,
we demonstrate a scenario where the problem of an unpredictable outcome is
mitigated by changing the underlying system in a way that makes this outcome
deterministic and predictable.

This work is embedded in the context of blockchains, which have recently
gained significant interest in both industry and research [158, 280]. Apart from
Bitcoin [203], the first blockchain protocol and cryptocurrency, a multitude of
different blockchains have emerged, each proposing various features and use
cases. In addition to cryptocurrencies native to a specific blockchain (such as
Ether, the native currency of the Ethereum blockchain), so-called User-Issued
Assets (UIAs) have been created. A popular type of such UIAs are tokens.

The technological variety in the blockchain research space outlines the potential
of blockchains. Currently, these blockchains are largely independent and uncon-
nected. Therefore, one of the goals of ongoing research is investigating possible
interoperability between blockchains [150]. One means of such interoperability
is the design of cross-blockchain token transfer protocols [34].

The main challenge in the development of cross-blockchain technologies is the
practical impossibility of verifying the existence of data across blockchains, which
we refer to as the Cross-Blockchain Proof Problem (XPP) [35]. This means that
novel methods are required for transferring information from one blockchain to
another. In this chapter, we present a protocol which allows to trade tokens

107

6. DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

Ecosystem of
Blockchains

108

independently of a single blockchain. This protocol is called Decentralized
Cross-Blockchain Token Transfers (DeXTT) and enables a novel type of tokens,
where balances of wallets are stored not only on one blockchain, but on multiple
blockchains simultaneously. DeXTT enforces eventual consistency of these token
balances across blockchains using incentives, ultimately relaying on observers
of a token transfer (so-called witnesses) to propagate this transfer information
across blockchains.

Example Scenario. Alice is holding digital cryptographic assets in the
form of tokens on CHX, a blockchain. She trusts CHX because she believes
that it is a trustworthy blockchain and that the technologies used in CHX
are solid and hard to attack. In order to purchase goods, Alice wants to
transfer a certain amount of these tokens to Bob. However, Bob does not
want to accept assets on CHX, because he trusts CHY, another blockchain,
more. He believes that the technologies used by CHY are even more secure
than those used by CHX. Alice and Bob both do not want to abandon their
beliefs about the blockchains’ security levels, and they also do not want to
involve a centralized third-party exchange service, because this transfer is
very sensitive and both parties do not want to risk such a centralized service
losing or stealing their funds.

However, thanks to DeXTT, Alice and Bob can trade using a single, cross-
blockchain token type. Instead of having to use centralized services to
exchange their assets between token types bound to CHX and CHY, respec-
tively, they use a cross-blockchain token which utilizes DeXTT for transfers.
This way, both Alice and Bob can exchange assets without having to trust
the security level of each other’s preferred blockchain.

6.1 Fundamentals

In the work at hand, we discuss DeXT'T, a novel protocol for transferring tokens
on a number of blockchain simultaneously. We denote an exemplary instance
of a token using this protocol as Cross-Blockchain Token (CBT). Note that
multiple instances of such a token can coexist. Our exemplary CBTs are not
locked to a single blockchain and can be traded using the DeXTT protocol,
which ensures synchronization of token balances across blockchains.

We refer to the set of blockchains participating in this protocol as an ecosystem
of blockchains. According to our protocol, a wallet W,, is holding CBTs not only
on a given blockchain, but on all blockchains in the ecosystem. Thus, a transfer
from W,, to another wallet W, is required to be recorded on all participating
blockchains, and there must be consensus among all participating blockchains
about the balance of each wallet.

6.1. Fundamentals

Due to the XPP [35], strict consistency between blockchains is not possible
using practical means, since any verification of data between two blockchains
would essentially require the nodes of one blockchain to verify blocks of another
blockchain. This implies that both the data and the consensus protocol must
be shared across blockchains, which is not possible in practice. Therefore, in
our proposal, we relax this requirement to eventual consistency, i.e., we accept
temporary disagreement with regard to balances, as we show in the following.
Eventual consistency is a constraint commonly used in distributed systems [21,
22]. In practice, blockchains themselves only provide eventual consistency, since
there is no guarantee when data submitted to the network will be included in
a block. Therefore, using eventual consistency for synchronizing data between
blockchains is a feasible approach.

For the purpose of this work, we follow the assumption that each party is
generally interested in all the blockchains in an ecosystem, and specifically, in
the consistency of their balance across all blockchains. This means that all
interested parties (i.e., wallet holders) are monitoring all blockchains in the
ecosystem, and if a party participates in the protocol on one blockchain, it also
participates on all other blockchains. We support this assumption by defining
later that any inconsistency in wallet balances between blockchains effectively
renders the wallet useless.

DeXTT assumes that non-zero token balances already exist on the involved
blockchains. We explicitly do not define the economic aspect of CBTs, i.e., the
lifecycle of tokens. Several minting strategies exist, and we provide an overview
of such approaches (constant supply, minting rate, etc.) in previous work [34].
Any of these approaches is usable together with DeXTT, since the protocol
assumes that tokens already exist.

6.1.1 Cross-Blockchain Balance Consistency

As outlined before, we require eventual consistency between blockchains par-
ticipating in the proposed protocol. Since due to the XPP, we cannot directly
propagate information across blockchains, we require an alternative way to reach
consistency across blockchains.

For this, we propose to achieve eventual consistency using claim-first transac-
tions [35]. While traditionally, blockchain transfers disallow claiming tokens
before they have been marked as spent, we explicitly decouple this temporal
order and allow its reversal, i.e., claiming tokens before spending them. In our
case, for a certain period of time, tokens are allowed to exist in the balance of
both the sender and the receiver (on different blockchains), namely until the
information is propagated to all blockchains. In the presented protocol, we
provide a mechanism to enforce eventual spending of the tokens in the sender
balance, as described in Section 6.2.

Eventual Consistency

Claim-First
Transactions [35]

109

6.

DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

Witnesses

Contestants

110

In order to ensure such eventual consistency, we rely on parties observing a
transfer to propagate this information across blockchains. These parties are
denominated as witnesses. A monetary incentive is provided for any witness
in order to ensure propagation. We use part of the transferred CBTs for these
witness rewards. The main challenge of this approach is the decision which
witness receives the reward. Using a first-come-first-serve basis is not feasible,
since it is possible that on one blockchain, one witness is the first to propagate
the transfer and claim the reward, while on another blockchain, another witness
takes this place. This would lead to two different witnesses receiving a reward
on two different blockchains, and therefore, to potentially inconsistent balances.

In this work, we address this problem by using deterministic witnesses [36].
Instead of using a first-come-first-serve reward distribution, we define a witness
contest which provides incentive for users to participate in the protocol. Its
duration is fixed to a validity period, contestants (i.e., reward candidates) can
register for the contest, and the decision of who wins the contest is made
deterministically and predictably by each blockchain at the end of the contest.
In Section 6.2, we propose an approach to deciding the winning witness in a way
that is fair (i.e., all contestants have the same chance of winning), while at the
same time, it is designed to be purely deterministic by definition, and—given the
assumptions discussed above—assures all blockchains reach the same decision
about assigning witness rewards.

Note that the requirement for participating in the witness contest is the propa-
gation of information about the token transfer. Therefore, the contest is used
as a vehicle of cross-blockchain information transfer, with the witness reward
used to ensure its reliability.

Our approach therefore solves the problem of assigning witness rewards, which is
required as an incentive for observers of a cross-blockchain transfer to propagate
this transfer information, ensuring eventual consistency across the ecosystem of
blockchains. In contrast to centralized solutions, our contribution provides an
entirely decentralized and trustless approach to cross-blockchain transfers.

6.1.2 Cryptographic Signatures and Hashes

In our approach, we make extensive use of cryptographic signatures and hashes,
which are essential for blockchains themselves. For instance, the Elliptic Curve
Digital Signature Algorithm (ECDSA) algorithm [149] is used by Ethereum for
creating and verifying signatures, and is also implemented natively and available
to the Ethereum Virtual Machine (EVM) [128]. We use Solidity, the smart
contract language of Ethereum, for the reference implementation of DeXTT.
However, we note that DeXTT is not limited to Solidity or the EVM, and
other blockchains offering signatures and hash algorithms can very well be used.
The only crucial property required by our approach is a distribution of hash

6.2. Decentralized Cross-Blockchain Transfers

values which is approximately uniform. KECCAK256, the hash algorithm used
by Ethereum, satisfies this requirement [103], as does the SHA-256 algorithm
used by Bitcoin [104].

6.1.3 Notations and Conventions

In the following, we use particular notations for the concise description of

certain objects: We denote blockchains as C with a subscript letter, e.g., C,.

Additionally, we denote wallets as W with a subscript letter, e.g., Ws, Wy, or
Wy. A wallet consists of a pair of corresponding keys, out of which one is a
public key, and one is a private key. When referring to a token transfer in
general, Wy is used to denote the source (sending) wallet, Wy is used to denote
the destination (receiving) wallet, and W,, denotes a witness as discussed in
Section 6.1.1. As discussed above—and later demonstrated in Table 6.1—the
balance of a wallet is stored across all blockchains.

In this work, we use the concept of transactions to denote actions executed on a
blockchain which modify the blockchain state. We use the expression “W,, posts
the transaction TRANS on C.” to describe the conceptual protocol. In a scenario
where smart contracts are used, this translates to the key pair of W,, being
used to sign a call to the smart contract on blockchain C,., where the function
trans () is invoked. For certain transactions, we define preconditions (e.g.,
sufficient balances), which can be implemented as checks within the smart
contract function. The transactions posted by wallets can either originate from
the action of a user, or be initiated by a program (e.g., a wallet application)
acting autonomously.

To denote our transactions, we use the notation as shown in (6.1), where TRANS
is the transaction type used (one out of CLAIM, CONTEST, FINALIZE, VETO, and
FINALIZE-VETO), W,, is the wallet (i.e., the pair of keys) used to sign and post
the transaction, a, b, and ¢ denote data contained in the transaction (i.e., the
arguments), and o is the signature when using the private key of W, to sign
the data [a, b, ¢|. For brevity, we use only o to denote a multivariate value, e.g.,
a three-variate ECDSA signature.

Wy : TRANS [a, b, c] (6.1)

g

We denote a transfer of @ CBTs from W, to Wy as Wy — W;. Furthermore, we
denote the CBT balance of W,, recorded on C. as C. : W,,.

6.2 Decentralized Cross-Blockchain Transfers

In the following, we present the DeXTT protocol, together with an example
transaction. In our example, we consider three blockchains participating in

Transactions

111

6.

DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

112

Table 6.1: Initial state of the involved blockchains at ¢ = 0

Blockchain C,

Blockchain Cp

Blockchain C,.

W, balance: 80 W, balance: 80 W, balance: 80
W, balance: 0 W, balance: 0 W, balance: 0
W,, balance: 0 W,, balance: 0 W,, balance: 0

cross-blockchain transfers, C,, Cp, and C.. Note, however, that our approach is
applicable to an arbitrary number of blockchains. Furthermore, we consider the
wallets Ws, Wy, Wy, Wy, and W,,. We assume that initially, YW, has 80 CBTs,
and all other wallets have a balance of zero (see Table 6.1). We furthermore use
a fixed reward of 1 CBT for the witness propagating this transaction across the
blockchain ecosystem. Note that pro rata fees (e.g., 1% of the transferred CBTs,
or an amount selected by the sender) are also possible and the exact fee model
is an economic choice. We will discuss this in more detail in Section 6.3.2.

As discussed in Section 6.1.1, claim-first transactions require all blockchains
within the ecosystem to maintain and synchronize token balances. Therefore,
the initial situation is as depicted in Table 6.1. Balances for W, and W, are
not shown, as they will remain zero throughout the example.

6.2.1 Transfer Initiation

In the following, we assume that W, intends to transfer 20 CBTs to Wy, i.e., to
reduce the CBT balance of Wy by 20, increase the CBT balance of Wy by 19 (20
reduced by 1, the witness reward), and increase the CBT balance of a (yet to
be decided) witness wallet by 1. As stated in Section 6.1.1, we only require
eventual consistency for this transfer, i.e., a temporary overlap is allowed where
Wy has already received 19 CBT on one blockchain, but the balance of Wy is
still unchanged on another blockchain.

Therefore, W signs this intent, confirming that indeed, 20 CBTs—minus 1 CBT
of witness reward—are to be transferred to W,;. Furthermore, we define a
validity period for the transfer, which denotes the time during which the witness
selection for the transfer has to take place. In our example scenario, this time
span lasts for 1 minute, however, this time can be set significantly shorter or
longer, depending on the use case. We provide an analysis of the impact of this
parameter in Section 6.3.1.

We denote the entirety of the sender’s intent using the notation shown in (6.2),
where [tg,t1] is the validity period, and [-], denotes the signature of the entire
content of the brackets by Ws. The resulting signature itself is denoted as . We
use the ECDSA algorithm, natively supported by the EVM, for all signatures.

6.2. Decentralized Cross-Blockchain Transfers

However, other algorithms can also be used, assuming that their verification is
supported on all involved blockchains.

[W 5 W, to, L (6.2)

The data contained in (6.2) is transferred to the receiving wallet W,;. This
transfer can happen on any blockchain within the ecosystem, or using an off-chain
channel. Since all of the data contained in (6.2) will be published throughout
the DeXTT transaction, this channel does not need to be secure, and we do
not specifically define any communication means. The receiving wallet then
counter-signs the data from (6.2) using its respective private key, yielding the
entire Proof of Intent (Pol), as shown in (6.3). Similar to a in (6.2), 5 in (6.3)
denotes the signature of all data contained in the brackets, as signed by W;.

[Wy 5 Wy, to, t1, & }/3’ (6.3)

The Pol contains all information necessary to prove to any blockchain (i.e., to
its smart contracts and miners) that the transfer is authorized by the sender and
accepted by the receiver. The receiver can now post this Pol using a transaction
we call cLAIM. This transaction allows the receiver to publish the Pol in order to
later claim the transferred CBTs. The receiver can post this on any blockchain
within the ecosystem, and does not need to post it on more than one blockchain,
as we will see later. The CLAIM transaction is defined as shown in (6.4).

Wy : CLAIM [WS 5 Wy, to, t1, @ L% (6.4)

The preconditions for the CLAIM transaction are (i) that the Pol is valid (i.e.,
that the signatures o and 8 are correct), (ii) that the balance of the source
wallet W, is sufficient (larger than x), (iii) that the Pol is within its validity
period (tg < t < t1), and (iv) that no Pol is known to the blockchain on which it
is posted with an overlapping validity period and the same source wallet Ws. In
other words, a wallet must not sign an outgoing Pol while another outgoing Pol
is still pending. This is done in order to prevent a double spending attack, where
two Pols are signed which are conflicting, i.e., which, if both were executed,
would reduce the sender’s balance below zero.

The purpose of the CLAIM transaction is the publishing of the Pol, which can
then be propagated across the blockchain ecosystem as described later.

In our example, we assume that the receiver W; posts the CLAIM transac-
tion (containing the Pol) on C, as shown in (6.5), where 1 and 61 mark the

113

6.

DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

114

Table 6.2: State after Pol publication at t = 1

Blockchain C, Blockchain Cp Blockchain C,.
W, balance: 80 W, balance: 80 W, balance: 80
W, balance: 0 W, balance: 0 W, balance: 0
W,, balance: 0 W,, balance: 0 W,, balance: 0
Pol 0xAA:
We 25 W,
t1 =61

validity period in seconds (i.e., one minute total validity), 0xAA is assumed to
be the signature «, and 0xBB is assumed to be the signature 5. For brevity,
one-byte signatures are used for demonstration in this example. Naturally, in
reality, the signature hashes are longer (e.g., 32 bytes for KECCAK256).

Wa s cLaM | Wy 25 Wy, 1, 61, 0xaa (6.5)

0xBB

The CLAIM transaction on C, changes the blockchain state as shown in Table 6.2.
We see that the Pol has been stored within C,, and is referred to by its signature a.
The balances remain unchanged on C, because the validity period is not yet
concluded, i.e., t; is not yet reached. Naturally, since no information has been
posted yet to Cp and C., these blockchains also remain unchanged.

6.2.2 Witness Contest

At this point, the information about the intended transfer (the Pol) is only
recorded on C,. However, this information must be propagated to all other
blockchains as well to ensure consistency of balances across blockchains. As
described in Section 6.1.1, we use a monetary reward provided to observers to
ensure this consistency. The observer receiving this witness reward is selected
during the witness contest as described in this section.

Any party observing the CLAIM transaction on C, can become a contestant,
i.e., a candidate for receiving a reward. In order to become a contestant, the
party must propagate the Pol across all blockchains in the ecosystem. We define
the transaction used for this as CONTEST. This transaction is defined for any
arbitrary wallet W, as shown in (6.6), where the new signature w is the result
of the contestant W, signing the Pol. This signature will later play a role in
determining the winner of the witness contest, as described in Section 6.2.3.

W, : CONTEST [Ws 5 Wy, to, t1, a, (6.6)
w

6.2. Decentralized Cross-Blockchain Transfers

The CONTEST transaction can be posted multiple times by various contestants
during the validity period. The preconditions are the same as for the CLAIM
transaction, i.e., the Pol must be valid and must not violate any other Pol
validity period. The only effect of the CLAIM transaction is that the Pol itself
and the contestant’s participation in the witness contest are recorded on the
respective blockchain.

In our example, we assume that W, is the first to post a CONTEST transaction
on Cp as shown in (6.7), where again, 1 and 61 denote the validity period, 0xAA
and 0xBB are the Pol signatures, and 0xC2 is the signature resulting from W,
signing the Pol. The signature values in this example are chosen arbitrarily in
order to demonstrate the subsequent witness contest. Again, one-byte signatures
are used for brevity.

W, : CONTEST [WS 20, Wy, 1, 61, OxAA, 0xBB } (6.7)
0xC2

Next, we assume that the other observers W, and W,, become contestants by
posting similar CONTEST transactions. We assume that the resulting signature
w for W, is 0xC3, and that the signature for W,, is 0xC1.

W, : CONTEST | Wy 25 Wy, 1, 61, 0xA, 0xEBB | (6.8)
0xC3

Wi, : CONTEST [Ws 20 W, 1, 61, 0xAA, OXBB} (6.9)
0xC1l

Transactions (6.7-6.9) are eventually posted to C4, Cp, and C.. This is because
according to the assumption in Section 6.1, every contestant participating in
the contest is interested in participating in all blockchains in the ecosystem to
maintain consistency of their own wallets.

The state resulting from the three contestants posting to Cq, Cp, and C, is shown
in Table 6.3. The blockchain maintains a list of contestants together with their
w signature values.

6.2.3 Deterministic Witness Selection

After the expiration of 1, the witness contest ends, and a winning witness must
be selected to be awarded the witness reward. This is performed by the FINALIZE
transaction as shown in (6.10), which must be triggered after ¢;.

FINALIZE [a } (6.10)

115

6.

DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

116

Table 6.3: State during witness contest at ¢t = 2

Blockchain C, Blockchain Cp Blockchain C,.

W, balance: 80 W, balance: 80 W, balance: 80
W, balance: 0 W, balance: 0 W, balance: 0
W,, balance: 0 W,, balance: 0 W,, balance: 0
Pol 0xAA: Pol 0xAA: Pol 0xAA:

We 25 W, Ws 25 W, Ws 25 W,

t1 =61 t1 =61 t1 =61

Contestants: Contestants: Contestants:

W, (0xC2) W, (0xC2) W, (0xC2)

W, (0xC3) W, (0xC3) W, (0xC3)

Wi (0xC1) Wi (0xC1) Wy (0%C1)

Conceptually, the FINALIZE transaction is purely time-based. It can be triggered
by the receiver, by any other party, or using a decentralized solution like the
Ethereum Alarm Clock [19]. The latter approach has the advantage of being
independent of any party’s activity. However, for simplicity, in our current
approach and the discussion below, we assume that the destination wallet Wy
posts the FINALIZE transaction on each blockchain.

The FINALIZE transaction only requires the parameter «, identifying the Pol,
because the blockchain already contains all necessary information about the
Pol. The precondition of ¢; being expired (¢ > ¢1) is necessary for the FINALIZE
transaction to avoid premature finalization.

The effect of the FINALIZE transaction is that the contest for the Pol—referred
to by its signature a—is concluded. This means that the winning witness is
awarded the witness reward, which, according to Section 6.2, is 1 CBT in our
current approach. Furthermore, the conclusion of the contest performs the
actual transfer of CBTs, i.e., x CBTs are deducted from the balance of W, and
Wy receives (x — 1) CBTs (z reduced by the witness reward). This action is
executed on all blockchains, since FINALIZE is posted on all blockchains.

We define the winning witness to be the contestant with the lowest signature
w (i.e., with its value closest to zero). Since this signature cannot be influenced by
the contestants (because it is only formed from the Pol data and the contestants’
private key), they have no way of increasing their chances of winning a particular
contest, except for creating a large number of wallets (private keys).

Such “mining for wallets” is not a violation of our protocol and no threat to
its fairness, since doing so is computationally expensive, and therefore creates
cost on its own. There exists a break-even point of the witness reward and the
cost created by the creation of a large number of wallets [36]. Effectively, this

6.2. Decentralized Cross-Blockchain Transfers

Table 6.4: Final state after witness contest at ¢ > 61

Blockchain C, Blockchain Cp Blockchain C,.

W, balance: 60 W, balance: 60 W, balance: 60
W, balance: 19 W, balance: 19 W, balance: 19
W, balance: 1 W, balance: 1 W,, balance: 1

Transfer

Sender s S S
W [: :

Contestant <P~ i BSNE | | N
Wy : :

Other S N LN ST e
Contestants

Chain C, L

Chain Cy,

Chain C,

to 4

Figure 6.1: Sequence of transactions within a DeXTT transfer

challenge is comparable to mining in Proof of Work (PoW) in that resources,
i.e., computing power, can be traded for rewards.

In our example above, the witness with the lowest w is W,,, with w = 0xC1.

Therefore, this witness is awarded the witness reward. The final blockchain
state is shown in Table 6.4. The balances of the competing contestants W,
and W,—mnot shown in Table 6.4—remain zero. The expired Pols are no longer
shown for brevity.

Figure 6.1 shows an overview of the transactions posted by various wallets on
various blockchains. The contestant which ultimately becomes the winning
witness (W),,) is shown separately from all other contestants, since this wallet
is later assigned the witness reward. We see that first, the sender W; provides
the receiver Wy with the transfer information shown in (6.2). This may happen
before or after t3. Then, not sooner than ty, the receiver posts a CLAIM
transaction to one of the blockchains (in this case, C,). This is observed by all
contestants, which then post CONTEST transactions to all blockchains. Note

117

6.

DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

118

that the CONTEST transactions do not have to follow any particular order, and
are expected to be posted concurrently by all contestants.

After t1 expires, the receiver posts the FINALIZE transaction, which finalizes
the transfer and deterministically assigns the witness reward to the contest
winner (in this case, Wy,).

6.2.4 Prevention of Double Spending

A malicious sender might sign two different Pols conflicting with each other.
For instance, a sender owning 10 CBTs might create two Pols, transferring
8 CBTs each, to two different wallets. Executing these transfers would reduce
the sender’s balance by 16 CBTs in total, resulting in —6 CBTs.

In order to prevent such behavior, we introduce the VETO transaction. The
VETO transaction can be called by any party noticing two conflicting Pols (i.e.,
two Pols with the same source, different destinations, and overlapping validity
periods). Since such Pols are forbidden by definition, the VETO transaction is
used to penalize the sender, and to protect the receiver from losing CBTs due
to inconsistent balances.

Since the VETO transaction requires incentive, we propose to use the same
technique as presented above, i.e., a deterministic contest. Any observer of a
Pol conflict can report this conflict using the VETO transaction, and after the
expiration of the veto validity period, the observer with the lowest w signature
is assigned a reward.

We therefore define the VETO transaction as shown in (6.11), where « refers to
the original Pol, which is known to the blockchain because it has already been
posted on a given blockchain, and the remaining data Wy, Wy, o/, t}, t}, and
o describe the new, conflicting Pol.

W, : VETO [a, Wy 5 W, th, th, o (6.11)

w

The VETO transaction, similar to CONTEST, is posted on all participating
blockchains. Note that multiple observers can be expected to concurrently
post VETO transactions. Therefore, it is possible that on one blockchain, a
given Pol (e.g., where a = 0x10) is posted first, and a second Pol (e.g., where
o/ = 0x20) is presented as “conflicting” by a VETO transaction, while on another
blockchain, the Pol where o = 0x20 is posted first, and the Pol with o/ = 0x10
is posted in the VETO transaction as “conflicting”. However, in the following,
we define a behavior for the VETO transaction that still maintains consistency,
regardless of the order of Pols.

6.2. Decentralized Cross-Blockchain Transfers

The preconditions for VETO are that « refers to a Pol already known to the
blockchain, that the conflicting Pol is valid, and that the two contained Pols
are actually conflicting.

The effects of VETO are as follows: (i) The sender of the conflicting Pols loses
all CBTs, i.e., the balance is set to zero to penalize such protocol-violating
behavior. (ii) Any of the two Pols with a non-expired validity period (i.e., any
Pol where ¢ < t1) is canceled. This means that no FINALIZE transaction will be
permitted for this Pol, the transfer itself will therefore not be executed, and no
witness reward will be assigned. Finally, (iii) a new contest is started, called
the veto contest. The veto contest is similar to a regular witness contest in that
its purpose is the propagation of information (in this case, the information of
conflicting Pols).

In the following, we propose a possible implementation of such veto contest,
however, its details (i.e., the definition of its validity period or the reward) are
specifics which may be implemented differently.

We propose to use the same reward for the veto contest as for the regular witness
contest (in our case, 1 CBT). Since all CBTs held by the sender are destroyed,
and only 1 CBT is assigned to the winner of the veto contest, all remaining
CBTs are lost. Furthermore, we propose the validity period expiration of the
veto contest, tygro, to be defined as shown in (6.12).

tyero = max(ty,t)) + max(t; — to, t] — t;) (6.12)

The definition shown in (6.12) states that the veto contest is valid until a point
in time which is found by taking the later expiration time of the conflicting
Pols (max(t1,t])) and adding the longer validity period (max(t; — to,t] — t())-
This is done to ensure that sufficient time is available for the veto contest. Again,
we note that this is an implementation detail and other approaches (e.g., a fixed
period) are also possible.

The veto contest is concluded by a FINALIZE-VETO transaction, defined as shown
in (6.13).

FINALIZE-VETO [a, o } (6.13)

The effect of the FINALIZE-VETO transaction is similar to that of the FINALIZE
transaction, except that no actual transfer is executed. The witness reward
is again assigned to the veto contestant—that is, a wallet posting a VETO
transaction—with the lowest w signature in the VETO transaction. Similar
to the FINALIZE transaction, the FINALIZE-VETO transaction can be called by
anyone, and in particular, the winning veto contestant has monetary incentive
in doing so.

119

6.

DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

120

6.3 Evaluation

The approach presented in Section 6.2 introduces transactions which change the
state of different blockchains within a blockchain ecosystem, according to given
rules. This can be implemented using smart contracts, e.g., using the Solidity
language [71]—more specifically, the EVM—on the Ethereum blockchain. We
use Solidity to create a reference implementation of the proposed protocol for
evaluation'. However, other ways of implementing such transactions exist. For
instance, instead of using smart contracts (e.g., when dealing with blockchains
without such capabilities), one might add backwards-compatible layers on top of
blockchains, providing the required capabilities for the transactions presented in
this work. A similar approach is used by OmniLayer [266] or CounterParty [69,
70], which add such layers for enhanced features. For this work, however, we use
our reference Solidity implementation of DeXTT for evaluation and cost analysis,
postponing the integration of approaches such as OmniLayer or CounterParty
to future work. Nevertheless, our current evaluation is sufficient to demonstrate
the overall functionality of the DeXTT protocol using Solidity smart contracts
as well as its conceptual applicability.

In order to evaluate our approach, we investigate its functionality, performance,
and cost impact in an ecosystem of blockchains with agents performing repeated
token transfers. We achieve these goals by using our reference implementation
consisting of Solidity smart contracts, deploying these smart contracts on a
number of private Ethereum-based blockchains, and using testing client software
to perform transfers with a given rate.

We ensure a reproducible and uniform ecosystem of blockchains by using three
geth nodes in Proof of Authority (PoA) mode, creating three private blockchains.
We choose PoA to achieve an energy-efficient testing and evaluation platform
while being able to perform repeated experiments. Note that the consensus
algorithm, i.e., PoW, PoA, or Proof of Stake (PoS), defines the behavior of
blockchain nodes between each other and maintains data consistency in the
network of a given blockchain [279]. However, the smart contract layer is
independent of the consensus algorithm. Therefore, our evaluation on PoA is
directly applicable to blockchains with any consensus algorithm, including PoW.

The geth nodes used in our experiments can be configured, for instance, with
regard to block time and Gas limit. We observe the behavior of the live Ethereum
blockchain (as of January 2019) and configure our nodes to follow this behavior.
Therefore, our nodes are configured to use a block time of 13 s on average, and
a Gas limit of 8 million Ethereum Gas, mimicking the live Ethereum chain.
We use private chains instead of the Ethereum main chain to enable a high
number and low cost of repeatable experiments in an automated fashion without
depending on external components, such as Ethereum nodes.

https://github.com/pantos—io/dextt-prototype

https://github.com/pantos-io/dextt-prototype

6.3. Evaluation

We use 10 clients constantly and simultaneously initiating transfers within the
blockchain ecosystem. This number is chosen as a balance between feasible and
reproducible experiments and expected real-world conditions. While it is small
compared to evaluations of other classes of distributed systems, we note that
the lack of scalability of blockchain technologies is a crucial issue in general, and

is seen as one of the main challenges for existing blockchain technologies [126].

We refer to existing literature for a study on how scalability of blockchains can
be improved [84, 258].

In our experimental ecosystem, each client constantly transfers random amounts
of CBTs to random wallets. If a client owns too few CBTs for a transaction,
no transaction is performed until CBTs are available again. After a successful
transfer, the client waits for a random time between 15 s and 30 s. Afterwards,
the process is repeated indefinitely throughout the entire experiment duration.

We perform two experiment series, as described in the following sections. The
first series is used to evaluate DeXTT scalability and the impact of the transfer
validity period, and consists of a series of 30-minute experiments, where each
individual experiment uses an increased validity period. The second series
consists of 20 experiments, again with a duration of 30 min each, used to
measure the average cost of a DeXTT transfer.

6.3.1 Scalability and Timing

The DeXTT protocol requires one CLAIM transaction per transfer, and for each
transfer, one FINALIZE transaction per blockchain. In addition, each contestant
posts one CONTEST transaction to each blockchain. We assume that candidates
which no longer have a chance to win the witness contest (because a candidate
with a lower signature w for the given transaction has already posted a CONTEST
transaction) do not post CONTEST transactions to avoid cost. Assuming uniform
distribution of w values, as defined in Section 6.1.2, on the average case, each
CONTEST transaction halves the space of remaining possible winning signatures
w (because the expected value of the uniform distribution is the arithmetic
mean of the domain). Therefore, with each CONTEST transaction, the likelihood
of another candidate existing with a lower w is halved. Following from this,
on average, log, n candidates will post a CONTEST transaction, where n is the
number of total observers.

Transfer time in the DeXTT protocol is directly impacted by the transfer validity
period [tg, t1] chosen by the sender. We therefore first evaluate the impact of the
validity period. Using too short validity periods leads to corrupted transfers, i.e.,
transfers which cause permanently inconsistent balances, since observers cannot
post CONTEST transactions in time. In such scenarios, eventual consistency
between blockchains is not guaranteed. As stated above, we use a block time
of 13 s, therefore, we start our experiments with 10 s, and increase the period

Validity Period

121

6.

DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

122

S
= 100 - - -
g i vy v
] (&} Q
S 2 < 2
A3 an) an) [an}
§ [5e) <t 0
= 50 |
E 2}
ao] 3 e
% 2 s
M)
E —]
5 0 7
O

13 26 39 52 65
Validity Period [s]

Figure 6.2: Impact of validity period on transaction success

by 5 s with each experiment. We then run our blockchain ecosystem for 30 min
using each validity period and record the number of corrupted transactions.
Note that we have to reset the inconsistent balances for wallets participating in
a corrupted transaction in order to be able to run the experiments for 30 min.

Figure 6.2 shows the results of these experiments. Beyond 52 s, no corrupted
transactions are observed. It becomes clear that using the reference imple-
mentation and waiting for 4 blocks (52 s) is sufficient for ensuring consistency.
Between 1 and 3 blocks (13 s and 39 s, respectively), the amount of corrupted
transactions declines with a varying rate.

From this experiment, we conclude that using a validity period with the length
of at least 4 blocks (52 s) is sufficient to maintain consistency using our reference
implementation. Additional time may be required in order to accommodate
slow network connectivity.

6.3.2 Cost Analysis of DeXTT Transfers

To estimate the cost incurred by DeXTT transfers, we run the same experiment
20 times. Based on our previous experiment, we choose 65 s (5 blocks, well above
the determined limit of 52 s) as the duration of the Pol validity period in each
transaction. We record the average cost of each transaction. Table 6.5 shows an
overview of the cost of the individual transactions involved in a DeXTT transfer.
For each transaction, we show the mean cost, and its standard deviation, both
in thousands of Ethereum Gas (kGas), and in United States Dollar (USD). For
this, we assume a Gas price of 10 Gwei (1 Ether = 10% Gwei = 10'8 wei) and a
price of Ether of 115.71 USD.

These values were obtained from the Ethereum live chain in January 2019. Note
that our implementation is optimized in that CLAIM and CONTEST both use
the same smart contract function. Nevertheless, we distinguish the semantic

6.3. Evaluation

Table 6.5: Transaction cost analysis

Transaction kGas (o) USD (o)

CLAIM 57.7 (11.1) 0.0668 (0.0128)
CONTEST 81.5 (64.2) 0.0943 (0.0743)
FINALIZE 45.5 (0.1) 0.0527 (< 0.0001)
VETO 131.3 (91.9) 0.1520 (0.1063)
FINALIZE-VETO 48.6 (1.7) 0.0563 (0.0020)

difference (posting of new transfer for CLAIM, and participating in a contest for
CONTEST) in the results.

In the following, we assume m blockchains and n total observers. For our
calculation, we assume that all observers monitor all blockchains, and post
CONTEST transactions if it benefits them. A regular DeXTT transfer (i.e., one
which does not contain a conflicting Pol, and therefore requires no veto) consists
of one CLAIM transaction (on the target chain), logy n CONTEST transactions (as
discussed in Section 6.3.1) on each blockchain, i.e., mlogy,n CONTEST trans-
actions, and m FINALIZE transactions. The CLAIM transaction is posted by
the receiver, and each CONTEST transactions is posted by an observer (thus
becoming a contestant). While the FINALIZE transaction can be posted by any
party, posting it is beneficial to the receiver (because it finalizes the transfer
to the receiver), and therefore it can be expected that the receiver will bear its
cost to finalize the transfer.

The expected cost in kGas for a DeXTT transfer are as follows: The receiver
bears the cost for one CLAIM transaction (57.7 kGas) and m FINALIZE transac-
tions (45.5 kGas each). Each of the log, n expected observers posting transactions
bears the cost for m CONTEST transactions (81.5 kGas each). The sender does
not bear any cost.

Assuming a blockchain ecosystem of 10 blockchains, the total transaction cost for
the receiver is 0.59 USD. Each of the log, n observers posting transactions bears
cost of 0.94 USD. These numbers represent our current reference implementation
and act as an upper bound for DeXTT transfer cost. Any additional optimization
to the smart contract code has the potential to further reduce the Gas cost
of the individual transactions, and therefore, of the overall DeXTT transfer.
Additionally, these numbers allow us to reason about the economic impact of
a currency using DeXTT transactions. Observers bear a transaction cost of
0.94 USD, and potentially receive a witness reward, currently defined as 1 CBT.
The chance of an observer winning is %, however, according to the discussion
in Section 6.3.1, on average, only logs n out of all n observers are expected to
post CONTEST transactions. Therefore, the likelihood for an observer posting a

. . .1
transaction to win the contest is %.

123

6.

DETERMINISTIC CONTESTS IN BLOCKCHAIN TRANSACTIONS

124

Therefore, the investment for each observer is 0.94 USD, the contest reward is
1 CBT, and the winning likelihood is bgT?n. From this, it follows that in order
for the observer to have incentive to post CONTEST transactions in an ecosystem
of m = 10 blockchains, the inequation shown in (6.14) must hold, where p is the
price of 1 CBT in USD.

1
8271, 0.94 [USD] (6.14)

In other words, the price of 1 CBT in USD divided by the number of observers
must be higher than 0.94. Assuming n = 10 observers, the CBT price must be
above 2.83 USD. Assuming n = 100, the CBT price must be above 14.15 USD.
For n = 1000, the CBT price must be above 94.32 USD. Ensuring this property
is non-trivial, as the price of any asset is determined by supply and demand,
and therefore the perceived value of CBT influences its price.

Note that these number assume m = 10 blockchains, and a fixed reward of
1 CBT. A pro rata reward, e.g., 1% of the transferred CBTs, would reduce the
required CBT price, but also increase the complexity of calculating the witness
incentive. Furthermore, a dynamic reward adaption based on the number of
observers, similar to the variable mining rewards in Bitcoin, or a value selected
by the sender, similar to the Gas price in Ethereum, can also be used to reduce
the required CBT price, and therefore incentivize observers. We note again that
these numbers pose an upper boundary for the expected DeXTT transfer cost
and CBT price requirements for witness incentive.

6.4 Related Work

As discussed at the beginning of this chapter, cross-blockchain interoperability
can be used to address the fragmentation of the blockchain research field. Yet,
to the best of our knowledge, contemporary approaches provide only limited
interoperability across blockchains.

Initial interoperability was limited to trading assets on centralized exchanges.
Subsequently, decentralized exchanges such as Bisq [16] or 0x [260] emerged.
Most recently, the Republic protocol [275] has been proposed, which includes a
decentralized dark pool exchange, i.e., details about an exchange are kept secret.

All of these approaches, however, are concerned with the exchange of assets,
generally using atomic swaps [123] for trustless asset exchange. In such an atomic
swap, for instance, one party might transfer Bitcoin to another party, while the
other party transfers Ether to the first. Therefore, each asset remains on its
blockchain. In contrast, we propose a protocol for trading assets independently
of a specific blockchains. In our approach, the balance information for such
assets is stored on all blockchains simultaneously.

6.5. Summary

Another approach to creating a multi-blockchain framework is presented in
PolkaDot [267]. PolkaDot aims to provide “the bedrock relay-chain” upon
which data structures can be hosted. However, in contrast to our approach, no
specifics about cross-blockchain asset transfers are provided. Instead, PolkaDot
is explicitly not designed to be used as a currency [267]. Furthermore, PolkaDot
is meant to be used as a basis for future blockchains (and other decentralized data
structures), while in our current approach, we aim to use existing blockchains
and implement functionality on top of them. However, the concepts presented
in the PolkaDot paper are complementary to techniques we use in our approach.

Decentralized cross-blockchain transfers allow users to fully utilize the existing
variety of blockchains, instead of being locked to a single blockchain. To the best
of our knowledge, the approach closest to the work at hand is Metronome [196],
which uses assets available on multiple blockchains. However, Metronome
proposes that assets still lie on one specific blockchain at a time, while in our
proposal, the assets are not bound to one blockchain.

The DeXTT protocol presented in this chapter is based on our own former work.
The XPP has been formally described in [35]. Furthermore, in [36], we describe
the deterministic witness selection approach conceptually. The work presented
in this chapter significantly extends our former work by providing a concrete
implementation of this approach within the DeXTT protocol. Furthermore, it
changes aspects of our earlier work, in which we also defined a token existing
across blockchains. Each wallet had a different balance on each blockchain (and
all balances were recorded on all blockchains) [35]. In the work at hand, this
concept is simplified, yielding only one balance per wallet (which is recorded on
all blockchains).

6.5 Summary

In this chapter, we have presented the DeXTT protocol, which can be used
for transferring CBTs. Within the DeXTT protocol, we face the problem of
choosing a witness to receive a witness reward. Instead of aiming to predict the
outcome of this contest on other blockchains from within a given blockchain, we
solve it by designing the protocol such that this prediction is no longer necessary.

Using deterministic witnesses [36], we design the protocol in a way that defines
the receiver of the witness reward in a deterministic and predictable way. In
our evaluation, we show the feasibility of our approach, and perform a thorough
cost analysis.

125

CHAPTER

Conclusions

The final chapter provides a summary of the main results achieved within this
thesis. We revisit the research questions formulated in Section 1.2, critically
analyze how these quesitons have been addressed by the contributions in Sec-
tion 7.1, and give an overview of the contributions and their advancement of
the scientific state of the art in Section 7.2. Finally, in Section 7.3, we give an
overview of open questions and ongoing research, and provide potential ground
for future work.

7.1 Research Questions Revisited

In Section 1.2, we have introduced three research questions. In this section, we
discuss how our contributions address these questions in detail.

Research Question I. How can predictive techniques be used in distributed
systems to optimize operational cost, performance, and reliability?

In this thesis, we have shown various tools which can be used to realize predictive
techniques in distributed systems. ANNs are a class of commonly used tools
provided by the field of ML [181]. Numerous variations and extensions of ANNs
exist. In Chapter 3, we use multi-layer ANNs to perform regression, which allows
us to predict the resource utilization of tasks submitted to a cloud computing
system. This can be used to optimize operational cost, since more cost-efficient
placement, scheduling, and scaling decisions can be made based on a sufficiently
precise prediction. In Chapter 4, we also use multi-layer ANNs, but in addition,
employ techniques such as LSTM, convolutional, and recurrent layers in these
ANNs. This allows us to use the ANN for classification at which step and

127

7.

CONCLUSIONS

128

how likely a given process will fail. This can both decrease cost and increase
reliability of the system, since predicting a failure allows to perform actions to
mitigate or compensate this failure, e.g., sending another shipment of goods if
the current shipment is likely to yield damaged goods.

Research Question II. How can predictive approaches maintain function-
ality and performance in unknown and uncertain situations?

In situations where data is not precise (i.e., subject to noise), or entirely missing,
system functionality and performance can be compromised. While Chapter 3
partially approaches such situations by using ANN regression to find such
missing data, Chapter 5 is the main contribution addressing this question. In
this contribution, we use EKF-based filtering to estimate and predict system
state based on both intrinsic metrics (i.e., system state measurements) and
extrinsic metrics (i.e., the system’s environment). In our scenario, this is used
to moderate the number of scaling operations, directly impacting the system’s
performance and cost.

Research Question III. Can uncertainty be overcome by adapting the
context of the system?

In Chapter 6, we show a scenario from the domain of blockchains where the
recipient of a reward (the witness reward) must be the same on a number
of blockchains. However, since direct communication between blockchains is
not possible according to the XPP, we address this uncertainty by adapting
the protocol using deterministic witnesses. While in contrast to the first two
contributions, this solution implies a fundamental change in the system at hand,
and assumes that such a change is possible, this contribution presents a feasible
technique allowing us to deterministically define how such witnesses are selected,
removing the uncertainty altogether.

7.2 Findings

In this thesis, we have shown how employing predictive approaches is beneficial
in the domain of distributed systems. As use cases, we have shown several
scenarios in different domains of distributed systems, and have showcased which
methods can be used to meet various scenarios.

In Chapter 3, we have considered a cloud-based service provider and shown
how ANNs can predict the resource utilization of tasks submitted by clients.
This prediction can be used to proactively scale cloud resources owned by a

7.2. Findings

service provider. In this scenario, the goal of the prediction is to improve scaling
and placement decisions of a distributed system. The dataset is labeled, and
available in advance, hence, we can use offline supervised learning. The results
of such learning can be directly used to improve the performance of a distributed
system. In our case, the approach yields a prediction of resource utilization with
20% less prediction error compared to the baseline of linear regression.

In Chapter 4, an inter-organizational business process is used for international
shipment of goods. We have used ANNs to predict the likelihood of a process
step failing. Such a prediction can be used to mitigate failures, for instance,
by ordering a new shipment of goods in case a damaged shipment becomes
likely. In this scenario, the dataset is not available in advance, hence, we use
online learning. Again, this dataset is labeled, since failures become evident—
albeit after they occur—and we therefore again use supervised learning. The
results of the learning performed in this contribution do not directly impact the
system performance, but can be used to trigger mitigation mechanisms, and can
therefore be used to improve the performance of the higher-order organizational
unit. In our case, the approach yields a precision of 87% when predicting failures
in a business process.

In Chapter 5, we have considered a research group analyzing images in a stream-
like fashion. We have shown how to use EKFs to estimate and predict the load
of the system used for image processing. This helps to moderate the number
of scaling events, allowing to reduce cost stemming from scaling overhead. In
this case, we do not have a labeled dataset, since the true state is unknown.
Additionally, we employ an online estimation while the DSP system is operating.
Using EKFs is beneficial in this scenarios since we can observe two quantities: On
the one hand, we take measurements on the system state to be observed, on the
other hand, we directly know the amount of data ingested by the DSP operator.
This fits the EKF model well, where the system state is influenced both by
itself (over time, using a state transition function), and by an input vector.
EKFs also account for the noise found in both the system state measurements
as well as the state transition function. In our case, EKFs allow a reduction of
88% in scaling events, compared to approaches not using EKFs.

Finally, in Chapter 6, we have visited the domain of blockchains and have
shown how to use deterministic witnesses to approach a lack of predictability
with systematic determinism. To record the transfer of value across various
blockchains, we must offer a witness reward to nodes performing this transfer.
However, the transfer would also have to be recorded across various blockchains,
resulting in a recursive problem. We tackle this problem by introducing a
deterministic process which is guaranteed to yield the same result (the same
selection of a witness) on all blockchains. Such a solution is viable in scenarios
where the prediction of a given data item is impossible, but the system itself (in
our case, the protocol used for value transfer) can be altered.

129

7.

CONCLUSIONS

130

7.3 Future Work

While the approaches presented in this thesis address the research questions
as discussed in the previous section, in future work, several aspects can be
investigated further.

First, additional data sources can be integrated into our solutions. While all of
our predictive approaches are general enough to take into account additional
data, doing so would naturally require additional evaluation. In Chapter 3, we
use the task type and its input as our prediction data. Additional data includes
the system state (e.g., its load), the client submitting the task, or context data
such as the time of day. In Chapter 4, we use process and context events taken
from two datasets. In Chapter 5, we use CPU load and memory utilization.
Additional data such as I/O utilization or network traffic could be used.

In addition to extending the data sources, it would be interesting to investi-
gate correlated data sources. For instance, in future work, we would like to
investigate situations where higher network traffic correlates with higher I/O
utilization, and the impact of such correlation on the proposed prediction tech-
niques. Furthermore, alternative means of normalization of data such as cosine
normalization [234] could be investigated. The impact of such normalization is
particularly interesting in online learning scenarios, as used in Chapter 4.

In Chapter 3, we use a relatively simple ANN topology. In Chapter 4, this
topology is extended using convolutional and recurrent layers. However, the
effect of additional techniques such as LSTM or recurrent layers on the approach
and scenario presented in Chapter 3 remains unexplored. With regard to the
learning process itself, we also identify potential for optimization. We currently
use Deeplearning4J, an existing third-party library, as a tool to perform our
ML-based prediction without particular regard to optimization of runtime
performance. In our setup, this is sufficient, since we assume a performant
platform to execute the necessary computations. However, extending our work
to devices with less computational power, such as those found in the IoT, would
require optimizing the computation itself.

Finally, in our current application, we only consider single instances of the
components taken into account in our system. In Chapter 3, we only consider
one task a a time, in Chapter 4, we only consider a single business process, and
in Chapter 5, we only consider a single DSP operator. However, in modern
distributed systems, system-wide effects can occur, and their influence on the
presented approaches remains to be investigated. For instance, in DSP, the
system load of one operator could directly influence the amount of incoming
data in a subsequent operator. Contemporary research is exploring this direction
using decentralized approaches [51]. In this thesis, such ripple effects are not
taken into account and therefore remain undiscovered.

Bibliography

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske.
“Business process management: A survey”. In: International Conference
on Business Process Management (BPM). LNCS 2678. Springer. 2003,
pp. 1-12. DOI: 10.1007/3-540-44895-0_1.

Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey,
Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik.
“The Design of the Borealis Stream Processing Engine.” In: Conference
on Innovative Data Systems Research (CIDR). 2005, pp. 277-289.

Asma Abu-Samah, Muhammad Kashif Shahzad, and Eric Zamai. “Bayesian
Based Methodology for the Extraction and Validation of Time Bound

Failure Signatures for Online Failure Prediction”. In: Reliability Engi-

neering & System Safety 167 (2017), pp. 616—628. por: 10.1016/7.
ress.2017.04.016.

Lucio Agostinho, Guilherme Feliciano, Leonardo Olivi, Eleri Cardozo, and
Eliane Guimaraes. “A Bio-Inspired Approach to Provisioning of Virtual
Resources in Federated Clouds”. In: 9th IEEFE International Conference
on Dependable, Autonomic and Secure Computing (DASC). IEEE, 2011,
pp. 598-604. DOI: 10.1109/DASC.2011.109.

Mohammed Alhamad, Tharam Dillon, and Elizabeth Chang. “SLA-Based
Trust Model for Cloud Computing”. In: 13th International Conference on
Network-Based Information Systems (NBIS). IEEE. 2010, pp. 321-324.
DOI: 10.1109/NB1S.2010.67.

Rainer von Ammon. “Event-Driven Business Process Management”. In:
Encyclopedia of Database Systems. Ed. by Ling Liu and M. Tamer Ozsu.
Springer, 2009, pp. 1068-1071. pDO1: 10.1007/978-0-387-39940-
9_5717.

Rainer von Ammon, Christoph Emmersberger, Florian Springer, and
Christian Wolff. “Event-Driven Business Process Management and its
Practical Application Taking the Example of DHL”. In: 1st International

131

https://doi.org/10.1007/3-540-44895-0_1
https://doi.org/10.1016/j.ress.2017.04.016
https://doi.org/10.1016/j.ress.2017.04.016
https://doi.org/10.1109/DASC.2011.109
https://doi.org/10.1109/NBiS.2010.67
https://doi.org/10.1007/978-0-387-39940-9_577
https://doi.org/10.1007/978-0-387-39940-9_577

BIBLIOGRAPHY

132

[11]

[14]

Workshop on Complex Event Processing for the Future Internet (iCEP).
CEUR 412. 2008, article 8.

Ashiq Anjum, Manu Sporny, and Alan Sill. “Blockchain Standards for
Compliance and Trust”. In: IEEE Cloud Computing 4.4 (2017), pp. 84-90.
DOI: 10.1109/MCC.2017.37910109.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ton Stoica, and Matei Zaharia. “A View of Cloud Comput-
ing”. In: Communications of the ACM 53.4 (2010), pp. 50-58. DOI:
10.1145/1721654.1721672.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. Above the Clouds: A Berkeley View of
Cloud Computing. Tech. rep. UCB/EECS-2009-28. Electrical Engineering
and Computer Sciences, University of California at Berkeley, 2009.

Marcos Dias Assungdo, Alexandre da Silva Veith, and Rajkumar Buyya.
“Distributed Data Stream Processing and Edge Computing: A Survey on
Resource Elasticity and Future Directions”. In: Journal of Network and
Computer Applications 103 (2018), pp. 1-17.

Luigi Atzori, Antonio lera, and Giacomo Morabito. “The Internet of
Things: A Survey”. In: Computer Networks 54.15 (2010), pp. 2787-2805.
DOI: 10.1016/7j.comnet.2010.05.010.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
“Basic Concepts and Taxonomy of Dependable and Secure Computing”.
In: IEEE Transactions on Dependable and Secure Computing 1.1 (2004),
pp. 11-33. DOL: 10.1109/TDSC.2004. 2.

Alistair Barros, Marlon Dumas, and Phillipa Oaks. “Standards for Web
Service Choreography and Orchestration: Status and Perspectives”. In:
Business Process Management Workshops (BPM). LNCS 3812. Springer,
2005, pp. 61-74. DOL: 10.1007/11678564_7.

Christian Baun, Marcel Kunze, Jens Nimis, and Stefan Tai. Cloud Com-
puting: Web-Based Dynamic IT Services. 2011. Do1: 10.1007/978-3—-
642-20917-8.

Chris Beams. Bisq - The Peer-to-Peer Bitcoin Exchange. URL: https:
//github . com/bisg—-network /bisg-docs/blob/master /
exchange/whitepaper.adoc. White Paper. Version 2018-10-13. Ac-
cessed 2019-05-05.

https://doi.org/10.1109/MCC.2017.3791019
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1007/11678564_7
https://doi.org/10.1007/978-3-642-20917-8
https://doi.org/10.1007/978-3-642-20917-8
https://github.com/bisq-network/bisq-docs/blob/master/exchange/whitepaper.adoc
https://github.com/bisq-network/bisq-docs/blob/master/exchange/whitepaper.adoc
https://github.com/bisq-network/bisq-docs/blob/master/exchange/whitepaper.adoc

Bibliography

[21]

[24]

Anton Beloglazov and Rajkumar Buyya. “Energy Efficient Allocation of
Virtual Machines in Cloud Data Centers”. In: 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing (CCGRID).
IEEE. 2010, pp. 577-578. po1: 10.1109/CCGRID.2010.45.

Shai Ben-David, Eyal Kushilevitz, and Yishay Mansour. “Online Learning
versus Offline Learning”. In: Machine Learning 29.1 (1997), pp. 45-63.
DOI: 10.1023/A:1007465907571.

Paul Razvan Berg and Mark Milton. Chronos: An open protocol for
streaming money. 2018. URL: http : / / chronosprotocol . org/
chronos-white-paper.pdf. White Paper. Version 0.2.2, 2018-08-17.
Accessed 2019-05-05.

David Bermbach, Frank Pallas, David Garcia Pérez, Pierluigi Plebani,
Maya Anderson, Ronen Kat, and Stefan Tai. “A Research Perspective
on Fog Computing”. In: Service-Oriented Computing - ICSOC 2017
Workshops. Springer, 2018, pp. 198-210. por: 10.1007/978-3-319-
91764-1_16.

David Bermbach and Stefan Tai. “Benchmarking Eventual Consistency:
Lessons Learned from Long-Term Experimental Studies”. In: IEEFE Inter-
national Conference on Cloud Engineering (IC2E). IEEE. 2014, pp. 47-56.
DOI: 10.1109/IC2E.2014.37.

David Bermbach and Stefan Tai. “Eventual Consistency: How soon is
eventual? An Evaluation of Amazon S3’s Consistency Behavior”. In: 6th
Workshop for Middleware for Service-Oriented Computing (MW4SOC).
IEEE. 2011, article 1. DO1: 10.1145/2093185.2093186.

Fabio Bezerra, Jacques Wainer, and Wil M. P. van der Aalst. “Anomaly
Detection Using Process Mining”. In: Enterprise, Business-Process and
Information Systems Modeling (BPMDS, EMMSAD). LNBIP 29. Springer,
2009, pp. 149-161. DOL: 10.1007/978-3-642-01862-6_13.

Ofer Biran, Antonio Corradi, Mario Fanelli, Luca Foschini, Alexander Nus,
Danny Raz, and Ezra Silvera. “A Stable Network-Aware VM Placement
for Cloud Systems”. In: 12th International Conference on Cluster, Cloud
and Grid Computing (CCGrid). IEEE. 2012, pp. 498-506. DOI: 10.1109/
CCGrid.2012.119.

Christopher Michael Bishop. Neural Networks for Pattern Recognition.
Oxford, 1995. 1SBN: 978-0-198-53849-3.

Christopher Michael Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 2006. 1SBN: 978-0-387-
31073-2.

133

https://doi.org/10.1109/CCGRID.2010.45
https://doi.org/10.1023/A:1007465907571
http://chronosprotocol.org/chronos-white-paper.pdf
http://chronosprotocol.org/chronos-white-paper.pdf
https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1109/IC2E.2014.37
https://doi.org/10.1145/2093185.2093186
https://doi.org/10.1007/978-3-642-01862-6_13
https://doi.org/10.1109/CCGrid.2012.119
https://doi.org/10.1109/CCGrid.2012.119

BIBLIOGRAPHY

134

[27]

28]

[31]

[34]

Norman Bobroff, Andrzej Kochut, and Kirk Beaty. “Dynamic Placement
of Virtual Machines for Managing SLA Violations”. In: 10th IFIP/IEEE
International Symposium on Integrated Network Management (INM).
IEEE. 2007, pp. 119-128. poI: 10.1109/INM.2007.374776.

Kristof Bohmer and Stefanie Rinderle-Ma. “Multi-Perspective Anomaly
Detection in Business Process Execution Events”. In: On the Mowve to
Meaningful Internet Systems (OTM). LNCS 10033. Springer, 2016, pp. 80—
98. DOI: 10.1007/978-3-319-48472-3_5.

André Benjamin Bondi. “Characteristics of Scalability and their Impact
on Performance”. In: 2nd International Workshop on Software and Per-
formance (WOSP). ACM. 2000, pp. 195-203. po1: 10.1145/350391.
350432.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. “Fog
Computing and its Role in the Internet of Things”. In: 1st Edition of
the MCC Workshop on Mobile Cloud Computing (MCC). ACM. 2012,
pp. 13-16. DOI: 10.1145/2342509.2342513.

Michael Borkowski, Walid Fdhila, Matteo Nardelli, Stefanie Rinderle-
Ma, and Stefan Schulte. “Event-Based Failure Prediction in Distributed
Business Processes”. In: Information Systems 81 (2019), pp. 220-235.
DOI: 10.1016/73.1s.2017.12.005.

Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. “Min-
imizing Cost by Reducing Scaling Operations in Distributed Stream
Processing”. In: PVLDB 12.7 (2019), pp. 724-737. por: 10.14778/
3317315.3317316.

Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. “Moder-
ated Resource Elasticity for Stream Processing Applications”. In: Parallel
Processing Workshops (Euro-Par). LNCS 10659. Springer, 2017, pp. 5-16.
DOI: 10.1007/978-3-319-75178-8_1.

Michael Borkowski, Daniel McDonald, Christoph Ritzer, and Stefan
Schulte. Towards Atomic Cross-Chain Token Transfers: State of the Art
and Open Questions within TAST. 2018. po1: 10.13140/RG.2.2.
10769.48489. White Paper, TU Wien.

Michael Borkowski, Christoph Ritzer, Daniel McDonald, and Stefan
Schulte. Caught in Chains: Claim-First Transactions for Cross-Blockchain
Asset Transfers. 2018. bOI: 10.13140/RG.2.2.24191.25769. White
Paper, TU Wien.

Michael Borkowski, Christoph Ritzer, and Stefan Schulte. Deterministic
Witnesses for Claim-First Transactions. 2018. DOI: 10.13140/RG.2.2.
17480.37123. White Paper, Technische Universitdt Wien.

https://doi.org/10.1109/INM.2007.374776
https://doi.org/10.1007/978-3-319-48472-3_5
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1016/j.is.2017.12.005
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.1007/978-3-319-75178-8_1
https://doi.org/10.13140/RG.2.2.10769.48489
https://doi.org/10.13140/RG.2.2.10769.48489
https://doi.org/10.13140/RG.2.2.24191.25769
https://doi.org/10.13140/RG.2.2.17480.37123
https://doi.org/10.13140/RG.2.2.17480.37123

Bibliography

[38]

[41]

[43]

[44]

[45]

Michael Borkowski, Stefan Schulte, and Christoph Hochreiner. “Pre-
dicting Cloud Resource Utilization”. In: 9th IEEE/ACM International
Conference on Utility and Cloud Computing (UCC). IEEE/ACM, 2016,
pp. 37-42. DOI: 10.1145/2996890.2996907

Michael Borkowski, Marten Sigwart, Philipp Frauenthaler, Taneli Hukki-
nen, and Stefan Schulte. “DeXTT: Deterministic Cross-Blockchain To-
ken Transfers”. In: IEEE Access 7.1 (2019), pp. 111030-111042. DOI:
10.1109/ACCESS.2019.2934707.

Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé.
“Integration of Cloud Computing and Internet of Things: A Survey”.
In: Future Generation Computer Systems 56 (2016), pp. 684-700. DOI:
10.1016/73.future.2015.09.021.

Leén Bottou. “Large-Scale Machine Learning with Stochastic Gradi-
ent Descent”. In: International Conference on Computational Statistics
(COMPSTAT). Springer, 2010, pp. 177-186. DOI1: 10.1007/978-3—
7908-2604-3_16.

Ivona Brandic. “Towards Self-manageable Cloud Services”. In: 33rd An-
nual IEEE International Computer Software and Applications Conference
(COMPSAC). Vol. 2. IEEE. 2009, pp. 128-133. DO1: 10.1109/COMPSAC.
2009.126.

Ivona Brandic, Schahram Dustdar, Tobias Anstett, David Schumm, Frank
Leymann, and Ralf Konrad. “Compliant Cloud Computing (C3): Archi-
tecture and Language Support for User-Driven Compliance Management
in Clouds”. In: 8rd IEEE International Conference on Cloud Computing
(CLOUD). IEEE. 2010, pp. 244-251. DO1: 10.1109/CLOUD.2010.42.

Ruth Breu, Schahram Dustdar, Johann Eder, Christian Huemer, Gerti
Kappel, Julius Kopke, Philip Langer, Jiirgen Mangler, Jan Mendling,
Gustaf Neumann, Stefanie Rinderle-Ma, Stefan Schulte, Stefan Sobernig,
and Barbara Weber. “Towards Living Inter-Organizational Processes”.
In: 15th IEEE Conference on Business Informatics (CBI). IEEE, 2013,
pp- 363-366. boI: 10.1109/CBI.2013.509.

Alejandro P. Buchmann, Stefan Appel, Tobias Freudenreich, Sebastian
Frischbier, and Pablo Ezequiel Guerrero. “From Calls to Events: Archi-
tecting Future BPM Systems”. In: International Conference on Business
Process Management (BPM). LNCS 7481. Springer, 2012, pp. 17-32. DOL:
10.1007/978-3-642-32885-5_2.

Rajkumar Buyya, Rajiv Ranjan, and Rodrigo Calheiros. “InterCloud:
Utility-Oriented Federation of Cloud Computing Environments for Scal-
ing of Application Services”. In: International Conference on Algorithms

135

https://doi.org/10.1145/2996890.2996907
https://doi.org/10.1109/ACCESS.2019.2934707
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1109/COMPSAC.2009.126
https://doi.org/10.1109/COMPSAC.2009.126
https://doi.org/10.1109/CLOUD.2010.42
https://doi.org/10.1109/CBI.2013.59
https://doi.org/10.1007/978-3-642-32885-5_2

BIBLIOGRAPHY

136

and Architectures for Parallel Processing (ICA3PP). LNCS 6081. Springer.
2010, pp. 13-31. DOI: 10.1007/978-3-642-13119-6_2.

Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. “Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as the 5th Utility”.
In: Future Generation Computer Systems 25.6 (2009), pp. 599-616. DOI:
10.1016/3.future.2008.12.001.

Federico Cabitza, Raffaele Rasoini, and Gian Franco Gensini. “Unin-
tended Consequences of Machine Learning in Medicine”. In: JAMA 318.6
(2017), pp. 517-518. DOI: 10.1001/jama.2017.7797.

Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria
Luisa Villani. “QoS-Aware Replanning of Composite Web Services”. In:
IEEE International Conference on Web Services (ICWS). IEEE, 2005,
pp. 121-129. por: 10.1109/ICWS.2005. 96.

Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Ian-
nucci, Francesco Lo Presti, and Raffaela Mirandola. “Moses: A Framework
for QoS Driven Runtime Adaptation of Service-Oriented Systems”. In:
IEEFE Transactions on Software Engineering 38.5 (2012), pp. 1138-1159.
DOI: 10.1109/TSE.2011.68.

Valeria Cardellini, Emiliano Casalicchio, Francesco Lo Presti, and Luca
Silvestri. “SLA-aware Resource Management for Application Service
Providers in the Cloud”. In: First International Symposium on Network
Cloud Computing and Applications (NCCA). IEEE. 2011, pp. 20-27. DOL:
10.1109/NCCA.2011.11.

Valeria Cardellini, Mirko D’angelo, Vincenzo Grassi, Moreno Marzolla,
and Raffaela Mirandola. “A Decentralized Approach to Network-Aware
Service Composition”. In: Furopean Conference on Service-Oriented and
Cloud Computing (ESOCC). LNCS 9306. Springer. 2015, pp. 34-48. DOL:
10.1007/978-3-319-24072-5_3.

Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo
Nardelli. “Optimal Operator Placement for Distributed Stream Processing
Applications”. In: 10th ACM International Conference on Distributed and
Event-based Systems (DEBS). ACM. 2016, pp. 69-80. po1: 10.1145/
2933267.2933312.

Valeria Cardellini, Tihana Galinac Grbac, Matteo Nardelli, Nikola Tan-
kovi¢, and Hong-Linh Truong. “QoS-Based Elasticity for Service Chains
in Distributed Edge Cloud Environments”. In: Autonomous Control
for a Reliable Internet of Services. Springer, 2018, pp. 182-211. DOI:
10.1007/978-3-319-90415-3_8.

https://doi.org/10.1007/978-3-642-13119-6_2
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1001/jama.2017.7797
https://doi.org/10.1109/ICWS.2005.96
https://doi.org/10.1109/TSE.2011.68
https://doi.org/10.1109/NCCA.2011.11
https://doi.org/10.1007/978-3-319-24072-5_3
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1007/978-3-319-90415-3_8

Bibliography

[57]

[59]

[60]

[62]

Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele
Russo Russo. “Optimal Operator Deployment and Replication for Elastic
Distributed Data Stream Processing”. In: Concurrency and Computation:

Practice and Ezperience 30.9 (2018), article e4334. DO1: 10.1002/cpe.

4334.

Valeria Cardellini, Matteo Nardelli, and Dario Luzi. “Elastic Stateful
Stream Processing in Storm”. In: International Conference on High
Performance Computing € Simulation (HPCS). IEEE. 2016, pp. 583-590.
DOI: 10.1109/HPCSim.2016.7568388.

Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele
Russo Russo. “Auto-Scaling in Data Stream Processing Applications: A
Model-Based Reinforcement Learning Approach”. In: Workshop on New
Frontiers in Quantitative Methods in Informatics (Inf@Q). Springer. 2017,
pp. 97-110. por: 10.1007/978-3-319-91632-3_8.

Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele
Russo Russo. “Decentralized Self-Adaptation for Elastic Data Stream
Processing”. In: Future Generation Computer Systems 87 (2018), pp. 171
185. po1: 10.1016/7.future.2018.05.025.

Eddy Caron, Frederic Desprez, and Adrian Muresan. “Forecasting for
Grid and Cloud Computing On-Demand Resources Based on Pattern
Matching”. In: 2nd IEEE International Conference on Cloud Computing
Technologies and Science (CloudCom,). 2010, pp. 456-463. DOI: 10.1109/
CloudCom.2010.65.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and
Peter Pietzuch. “Integrating Scale Out and Fault Tolerance in Stream
Processing Using Operator State Management”. In: ACM SIGMOD
International Conference on Management of Data (SIGMOD). ACM.
2013, pp. 725-736. DOL: 10.1145/2463676.2465282.

Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. “Optimization of
Resource Provisioning Cost in Cloud Computing”. In: IEEE Transactions
on Services Computing 5.2 (2012), pp. 164-177. DO1: 10.1109/TSC.
2011.7.

Jeeva Chelladhurai, Pethuru Raj Chelliah, and Sathish Alampalayam Ku-
mar. “Securing Docker Containers from Denial of Service (DoS) Attacks”.
In: IEEE International Conference on Services Computing (SCC). IEEE.
2016, pp. 856-859. pO1: 10.1109/SCC.2016.123.

Ming Chen, Hui Zhang, Ya-Yunn Su, Xiaorui Wang, Guofei Jiang, and
Kenji Yoshihira. “Effective VM Sizing in Virtualized Data Centers”.

137

https://doi.org/10.1002/cpe.4334
https://doi.org/10.1002/cpe.4334
https://doi.org/10.1109/HPCSim.2016.7568388
https://doi.org/10.1007/978-3-319-91632-3_8
https://doi.org/10.1016/j.future.2018.05.025
https://doi.org/10.1109/CloudCom.2010.65
https://doi.org/10.1109/CloudCom.2010.65
https://doi.org/10.1145/2463676.2465282
https://doi.org/10.1109/TSC.2011.7
https://doi.org/10.1109/TSC.2011.7
https://doi.org/10.1109/SCC.2016.123

BIBLIOGRAPHY

138

[64]

[69]

[70]

[71]

[72]

In: International Symposium on Integrated Network Management (IM).
IEEE. 2011, pp. 594-601. Dor: 10.1109/INM.2011.5990564.

Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald
Carney, Ugur Cetintemel, Ying Xing, and Stanley B Zdonik. “Scalable
Distributed Stream Processing.” In: First Biennial Conference on Inno-
vative Data Systems Research (CIDR). Vol. 3. 2003, pp. 257-268.

Ronan Collobert and Jason Weston. “A Unified Architecture for Natural
Language Processing: Deep Neural Networks with Multitask Learning”.
In: International Conference on Machine Learning (ICML). ACM, 2008,
pp. 160-167. DOI: 10.1145/1390156.1390177.

Raffaele Conforti, Marcello La Rosa, and Arthur H. M. ter Hofstede.
“Filtering Out Infrequent Behavior from Business Process Event Logs”.
In: IEEE Transactions on Knowledge and Data Engineering 29.2 (2017),
pp. 300-314. DOI: 10.1109/TKDE.2016.2614680.

Raffaele Conforti, Massimiliano de Leoni, Marcello La Rosa, Wil M. P.
van der Aalst, and Arthur H. M. ter Hofstede. “A Recommendation
System for Predicting Risks Across Multiple Business Process Instances”.
In: Decision Support Systems 69 (2015), pp. 1-19. por: 10.1016/ 3.
dss.2014.10.006.

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram
Dustdar. “Multi-level Elasticity Control of Cloud Services”. In: Inter-
national Conference on Service-Oriented Computing (ICSOC). LNCS
8274. Springer. 2013, pp. 429-436. DOI1: 10.1007/978-3-642-45005-
1_31.

Antonio Corradi, Mario Fanelli, and Luca Foschini. “VM Consolidation: A
Real Case Based on OpenStack Cloud”. In: Future Generation Computer
Systems 32 (2014), pp. 118-127. po1: 10.1016/j.future.2012.05.
012.

Counterparty. Counterparty. URL: https ://counterparty.io/
docs/. Website. Accessed 2019-05-05.

Counterparty. Counterparty Protocol Specification. 2018. URL: https://

github.com/CounterpartyXCP/Documentation/blob/master/
Developers/protocol_specification.md. Version 2018-10-02.

Accessed 2019-05-05.

Chris Dannen. Introducing Ethereum and Solidity. Springer, 2017. DOTI:
10.1007/978-1-4842-2535-6.

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi.
“Albatross: Lightweight Elasticity in Shared Storage Databases for the

https://doi.org/10.1109/INM.2011.5990564
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1109/TKDE.2016.2614680
https://doi.org/10.1016/j.dss.2014.10.006
https://doi.org/10.1016/j.dss.2014.10.006
https://doi.org/10.1007/978-3-642-45005-1_31
https://doi.org/10.1007/978-3-642-45005-1_31
https://doi.org/10.1016/j.future.2012.05.012
https://doi.org/10.1016/j.future.2012.05.012
https://counterparty.io/docs/
https://counterparty.io/docs/
https://github.com/CounterpartyXCP/Documentation/blob/master/Developers/protocol_specification.md
https://github.com/CounterpartyXCP/Documentation/blob/master/Developers/protocol_specification.md
https://github.com/CounterpartyXCP/Documentation/blob/master/Developers/protocol_specification.md
https://doi.org/10.1007/978-1-4842-2535-6

Bibliography

[77]

[79]

Cloud Using Live Data Migration”. In: PVLDB 4.8 (2011), pp. 494-505.
DOI: 10.14778/2002974.2002977.

Amir Vahid Dastjerdi and Rajkumar Buyya. “Fog Computing: Helping
the Internet of Things Realize Its Potential”. In: Computer 49.8 (2016),
pp. 112-116. DOI: 10.1109/MC.2016.245.

Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-Efficient
and QoS-Aware Cluster Management”. In: 19th International Conference
on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). ACM. 2014, pp. 127-144. pDOI: 10.1145/2541940.

2541941.

Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle.
“Elasticity in Cloud Computing: State of the Art and Research Chal-
lenges”. In: IEEE Transactions on Services Computing 11.2 (2017),
pp. 430-447. DOL: 10.1109/TSC.2017.2711009.

Robert Didden, Jeff Sigafoos, Mark F. O’Reilly, Giulio E. Lancioni, and
Peter Sturmey. “A Multisite Cross-Cultural Replication of Unsuccess-
ful Self-Treatment of Writer’s Block”. In: Journal of Applied Behavior
Analysis 40.4 (2007), pp. 773-773. DOI: 10.1901/jaba.2007.773.

Jeffrey Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini
Venugopalan, Sergio Guadarrama, Kate Saenko, and Trevor Darrell.
“Long-Term Recurrent Convolutional Networks for Visual Recognition and
Description”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 39.4 (2017), pp. 677-691. por: 10.1109/TPAMI.2016.

2599174.

Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto, Ramin
Sadre, and Aiko Pras. “Inside Dropbox: Understanding Personal Cloud
Storage Services”. In: Internet Measurement Conference (IMC). ACM.
2012, pp. 481-494. DOL: 10.1145/2398776.2398827.

Rajdeep Dua, A. Reddy Raja, and Dharmesh Kakadia. “Virtualization vs
Containerization to Support PaaS”. In: IEEFE International Conference
on Cloud Engineering (IC2E). IEEE. 2014, pp. 610-614. po1: 10.1109/
IC2E.2014.41.

Thang Le Duc, Rafael Garcia Leiva, Paolo Casari, and Per-Olov Ostberg.
“Machine Learning Methods for Reliable Resource Provisioning in Edge-
Cloud Computing: A Survey”. In: ACM Computing Surveys 52.5 (2019),
p. 94. DOL: 10.1145/3341145.

Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong.
“Principles of Elastic Processes”. In: IEEE Internet Computing 15.5
(2011), pp. 66-71. DOI: 10.1109/MIC.2011.121.

139

https://doi.org/10.14778/2002974.2002977
https://doi.org/10.1109/MC.2016.245
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1901/jaba.2007.773
https://doi.org/10.1109/TPAMI.2016.2599174
https://doi.org/10.1109/TPAMI.2016.2599174
https://doi.org/10.1145/2398776.2398827
https://doi.org/10.1109/IC2E.2014.41
https://doi.org/10.1109/IC2E.2014.41
https://doi.org/10.1145/3341145
https://doi.org/10.1109/MIC.2011.121

BIBLIOGRAPHY

140

[82]

[85]

[36]

[90]

[91]

Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant,
Nicolas Rivierre, and Isis Truck. “Using Reinforcement Learning for Auto-
nomic Resource Allocation in Clouds: Towards a Fully Automated Work-
flow”. In: 7th International Conference on Autonomic and Autonomous
Systems (ICAS). TARIA. 2011, pp. 67-74.

Jacob Eberhardt and Stefan Tai. “On or Off the Blockchain? Insights
on Off-Chaining Computation and Data”. In: European Conference on
Service-Oriented and Cloud Computing (ESOCC). LNCS 10465. Springer.
2017, pp. 3-15. DOL: 10.1007/978-3-319-67262-5_1.

Jacob Eberhardt and Stefan Tai. “ZoKrates - Scalable Privacy-Preserving
Off-Chain Computations”. In: IEEFE International Conference on Block-
chain. 2018, pp. 1084-1091. por: 10.1109/Cybermatics_2018.
2018.00199.

Dmitry Efanov and Pavel Roschin. “The All-Pervasiveness of the Block-
chain Technology”. In: Procedia Computer Science 123 (2018), pp. 116—
121. DOL: 10.1016/5.procs.2018.01.0109.

Dominik Ernst, David Bermbach, and Stefan Tai. “Understanding the
container ecosystem: A taxonomy of building blocks for container lifecycle

and cluster management”. In: IEEE Second International Workshop on
Container Technologies and Container Clouds (WoC). IEEE, 2016.

Opher Etzion and Peter Niblett. Fvent Processing in Action. Manning
Publications, 2010. ISBN: 978-1-935-18221-4.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. “The Many Faces of Publish/Subscribe”. In: ACM Computing
Surveys 35.2 (2003), pp. 114-131. poI: 10.1145/857076.857078.

Seven Euting, Christian Janiesch, Robin Fischer, Stefan Tai, and Ingo
Weber. “Scalable Business Process Execution in the Cloud”. In: IFEE
International Conference on Cloud Engineering (IC2E). IEEE. 2014,
pp. 175-184. DOI: 10.1109/IC2E.2014.13.

Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. “Predicting
Process Behaviour Using Deep Learning”. In: Decision Support Systems
100 (2017), pp. 129-140. por: 10.1016/3j.dss.2017.04.003.

Guisheng Fan, Huiqun Yu, Ligiong Chen, and Dongmei Liu. “A Petri Net-
Based Byzantine Fault Diagnosis Method for Service Composition”. In:
36th IEEE Computer Software and Applications Conference (COMPSAC).
IEEE, 2012, pp. 42-51. po1: 10.1109/COMPSAC.2012.63.

Walid Fdhila, Conrad Indiono, Stefanie Rinderle-Ma, and Manfred Re-
ichert. “Dealing with Change in Process Choreographies: Design and

https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://doi.org/10.1016/j.procs.2018.01.019
https://doi.org/10.1145/857076.857078
https://doi.org/10.1109/IC2E.2014.13
https://doi.org/10.1016/j.dss.2017.04.003
https://doi.org/10.1109/COMPSAC.2012.63

Bibliography

Implementation of Propagation Algorithms”. In: Information Systems 49
(2015), pp. 1-24. poI: 10.1016/5.is.2014.10.004.

[93] Walid Fdhila and Stefanie Rinderle-Ma. “Predicting Change Propagation
Impacts in Collaborative Business Processes”. In: 29th Annual ACM
Symposium on Applied Computing (SAC). ACM. 2014, pp. 1378-1385.
DOI: 10.1145/2554850.2554966.

[94] Walid Fdhila, Stefanie Rinderle-Ma, Aymen Baouab, Olivier Perrin, and
Claude Godart. “On Evolving Partitioned Web Service Orchestrations”.
In: 5th IEEE International Conference on Service-Oriented Computing
and Applications (SOCA). 2012, pp. 1-6. DO1: 10.1109/SOCA.2012.
6449446.

[95] Walid Fdhila, Stefanie Rinderle-Ma, David Knuplesch, and Manfred
Reichert. “Change and Compliance in Collaborative Processes”. In: IEEE
International Conference on Services Computing (SCC). IEEE, 2015,
pp. 162-169. pOI: 10.1109/SCC.2015.31.

[96] Walid Fdhila, Stefanie Rinderle-Ma, and Manfred Reichert. “Change
Propagation in Collaborative Processes Scenarios”. In: 8th International
Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom). IEEE. 2012, pp. 452-461. DOI: 10.4108/
icst.collaboratecom.2012.250408.

[97] Zohar Feldman, Fabiana Fournier, Rod Franklin, and Andreas Metzger.
“Proactive Event Processing in Action: A Case Study on the Proactive
Management of Transport Processes (Industry Article)”. In: 7th ACM
International Conference on Distributed Event-Based Systems (DEBS).
ACM, 2013, pp. 97-106. DOI: 10.1145/2488222.2488274.

[98] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik
Ramasamy. “Dhalion: Self-Regulating Stream Processing in Heron”.
In: PVLDB 10.12 (2017), pp. 1825-1836. pOI: 10.14778/3137765.
3137786.

[99] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. “Discovering
Context-Aware Models for Predicting Business Process Performances”.
In: On the Move to Meaningful Internet Systems (OTM). LNCS 7565.
Springer. 2012, pp. 287-304. DO1: 10.1007/978-3-642-33606-
5_18.

[100] Jerome H. Friedman. “Data Mining and Statistics: What’s the Connec-
tion?” In: 29th Symposium on the Interface Between Computer Science
and Statistics. Springer. 1998, pp. 1-7. bor: 10.1007/978-1-4612-
2856-1.

141

https://doi.org/10.1016/j.is.2014.10.004
https://doi.org/10.1145/2554850.2554966
https://doi.org/10.1109/SOCA.2012.6449446
https://doi.org/10.1109/SOCA.2012.6449446
https://doi.org/10.1109/SCC.2015.31
https://doi.org/10.4108/icst.collaboratecom.2012.250408
https://doi.org/10.4108/icst.collaboratecom.2012.250408
https://doi.org/10.1145/2488222.2488274
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-3-642-33606-5_18
https://doi.org/10.1007/978-1-4612-2856-1
https://doi.org/10.1007/978-1-4612-2856-1

BIBLIOGRAPHY

142

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Anshul Gandhi, Yuan Chen, Daniel Gmach, Martin Arlitt, and Manish
Marwah. “Hybrid Resource Provisioning for Minimizing Data Center
SLA Violations and Power Consumption”. In: Sustainable Computing:
Informatics and Systems 2.2 (2012), pp. 91-104. por: 10.1016/ 7.
suscom.2012.01.005.

Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li
Zhang. “Model-Driven Optimal Resource Scaling in Cloud”. In: Software
€9 Systems Modeling 17.2 (2018), pp. 509-526. DOI: 10.1007/s10270—
017-0584-y.

Atefeh Gholipour and Sattar Mirzakuchaki. “A Pseudorandom Number
Generator with KECCAK Hash Function”. In: International Journal
of Computer and FElectrical Engineering 3.6 (2011), pp. 896-899. DOI:
10.7763/IJCEE.2011.V3.4309.

Henri Gilbert and Helena Handschuh. “Security Analysis of SHA-256 and
Sisters”. In: International Workshop on Selected Areas in Cryptography
(SAC). Springer. 2003, pp. 175-193. por: 10.1007/978-3-540—-
24654-1_13.

Florian Glaser and Luis Bezzenberger. “Beyond Cryptocurrencies — A
Taxonomy of Decentralized Consensus Systems”. In: 23rd European Con-
ference on Information Systems (ECIS). 2015, paper 57, 18 pages. DOI:
10.18151/7217326.

Xavier Glorot and Yoshua Bengio. “Understanding the Difficulty of
Training Deep Feedforward Neural Networks”. In: 13th International
Conference on Artificial Intelligence and Statistics (AISTATS). JMLR 9.
PMLR, 2010, pp. 249-256. Do1: 10.1.1.207.2059.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks”. In: 14th International Conference on Artificial Intelli-
gence and Statistics (AISTATS). JMLR 15. PMLR, 2011, pp. 315-323.
DOI: 10.1.1.208.64409.

Zhenhuan Gong, Xiaohui Gu, and John Wilkes. “PRESS: Predictive
Elastic Resource Scaling for Cloud Systems”. In: International Conference
on Network and Service Management (CNSM). IEEE. 2010, pp. 9-16.
DOI: 10.1109/CNSM.2010.5691343.

Graham C. Goodwin, Stefan F. Graebe, and Mario E. Salgado. Control
System Design. Prentice Hall, 2001. 1SBN: 978-0-139-58653-8.

Louis Gosselin, Maxime Tye-Gingras, and Frangois Mathieu-Potvin. “Re-
view of Utilization of Genetic Algorithms in Heat Transfer Problems”. In:
International Journal of Heat and Mass Transfer 52.9-10 (2009), pp. 2169
2188. po1: 10.1016/7j.1ijheatmasstransfer.2008.11.015.

https://doi.org/10.1016/j.suscom.2012.01.005
https://doi.org/10.1016/j.suscom.2012.01.005
https://doi.org/10.1007/s10270-017-0584-y
https://doi.org/10.1007/s10270-017-0584-y
https://doi.org/10.7763/IJCEE.2011.V3.439
https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.18151/7217326
https://doi.org/10.1.1.207.2059
https://doi.org/10.1.1.208.6449
https://doi.org/10.1109/CNSM.2010.5691343
https://doi.org/10.1016/j.ijheatmasstransfer.2008.11.015

Bibliography

[111] Ratl Gracia-Tinedo, Yongchao Tian, Josep Sampé, Hamza Harkous,
John Lenton, Pedro Garcia-Lépez, Marc Sanchez-Artigas, and Marko
Vukolic. “Dissecting UbuntuOne: Autopsy of a Global-Scale Personal
Cloud Back-End”. In: Internet Measurement Conference (IMC). ACM.
2015, pp. 155-168. DOI: 10.1145/2815675.2815677.

[112] Gregor Grambow, Roy Oberhauser, and Manfred Reichert. “Event-Driven
Exception Handling for Software Engineering Processes”. In: International
Conference on Business Process Management (BPM). LNBIP 99. 2012,
pp. 414-426. DOI: 10.1007/978-3-642-28108-2_40.

[113] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. “Internet of Things (IoT): A Vision, Architectural Elements,
and Future Directions”. In: Future Generation Computer Systems 29.7
(2013), pp. 1645-1660. DOI: 10.1016/ 7. future.2013.01.010.

[114] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Clau-
dio Soriente, and Patrick Valduriez. “StreamCloud: An Elastic and Scal-
able Data Streaming System”. In: IFEE Transactions on Parallel and
Distributed Systems 23.12 (2012), pp. 2351-2365. DO1: 10.1109/TPDS.
2012.24.

[115] Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney
J. Douglas, and H. Sebastian Seung. “Digital Selection and Analogue
Amplification Coexist in a Cortex-Inspired Silicon Circuit”. In: Nature
405.6789 (2000), pp. 947-951. por: 10.1038/35016072.

[116] Rui Han, Li Guo, Moustafa M. Ghanem, and Yike Guo. “Lightweight
Resource Scaling for Cloud Applications”. In: 12th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID).
IEEE, 2012, pp. 644-651. DOI: 10.1109/CCGrid.2012.52.

[117] Edward James Hannan. Multiple Time Series. Wiley, 1970. 1SBN: 978-0-
471-34805-4. DOI: 10.1002/9780470316429.

[118] Fang Hao, Murali Kodialam, T. V. Lakshman, and Sarit Mukherjee.
“Online Allocation of Virtual Machines in a Distributed Cloud”. In:
IEEE/ACM Transactions on Networking 25.1 (2017), pp. 238-249. poOI:
10.1109/TNET.2016.2575779.

[119] Simon Haykin. Neural Networks: A Comprehensive Foundation. 2nd
Edition. Prentice Hall, 1998. 1sBN: 978-0-132-73350-2.

[120] Robert Hecht-Nielsen. “Theory of the Backpropagation Neural Network”.
In: Neural Networks for Perception: Computation, Learning, and Ar-
chitectures. 1992, pp. 65-93. DOI: 10.1016/B978-0-12-741252—-
8.50010-8.

143

https://doi.org/10.1145/2815675.2815677
https://doi.org/10.1007/978-3-642-28108-2_40
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1109/TPDS.2012.24
https://doi.org/10.1109/TPDS.2012.24
https://doi.org/10.1038/35016072
https://doi.org/10.1109/CCGrid.2012.52
https://doi.org/10.1002/9780470316429
https://doi.org/10.1109/TNET.2016.2575779
https://doi.org/10.1016/B978-0-12-741252-8.50010-8
https://doi.org/10.1016/B978-0-12-741252-8.50010-8

BIBLIOGRAPHY

144

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Thomas Heinze, Lars Roediger, Andreas Meister, Yuanzhen Ji, Zbigniew
Jerzak, and Christof Fetzer. “Online Parameter Optimization for Elastic
Data Stream Processing”. In: 6th ACM Symposium on Cloud Computing
(SoCC). ACM, 2015, pp. 276-287. DOI: 10.1145/2806777.2806847.

Nikolas Roman Herbst, Samuel Kounev, and Ralf H Reussner. “Elasticity
in Cloud Computing: What It Is, and What It Is Not”. In: 10th Interna-
tional Conference on Autonomic Computing (ICAC). Vol. 13. USENIX.
2013, pp. 23-27.

Maurice Herlihy. “Atomic Cross-Chain Swaps”. In: ACM Symposium on
Principles of Distributed Computing (PODC). ACM, 2018, pp. 245-254.
DOI: 10.1145/3212734.3212736.

Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien. “Creat-
ing Context-Adaptive Business Processes”. In: International Conference
on Service-Oriented Computing (ICSOC). LNCS 6470. Springer, 2010,
pp- 228-242. DOI: 10.1007/978-3-642-17358-5_16.

Sergio Hernandez, Sebastiaan J. van Zelst, Joaquin Ezpeleta, and Wil
M. P. van der Aalst. “Handling Big(ger) Logs: Connecting ProM 6 to
Apache Hadoop”. In: Proceedings of the BPM Demo Session 2015. CEUR
Workshop Proceedings 1418. CEUR, 2015, pp. 80-84.

Jordi Herrera-Joancomarti and Cristina Pérez-Sola. “Privacy in Bitcoin
Transactions: New Challenges from Blockchain Scalability Solutions”. In:
Modeling Decisions for Artificial Intelligence (MDAI). Springer, 2016,
pp. 26-44. DO1: 10.1007/978-3-319-45656-0_3.

Michael G. Hinchey and Roy Sterritt. “Self-Managing Software”. In:
Computer 39.2 (2006), pp. 107-109. po1: 10.1109/MC.2006.69.

Yoichi Hirai. “Defining the Ethereum Virtual Machine for Interactive
Theorem Provers”. In: International Conference on Financial Cryp-
tography and Data Security (FC). Springer, 2017, pp. 520-535. DOI:
10.1007/978-3-319-70278-0_33.

Christoph Hochreiner, Stefan Schulte, Schahram Dustdar, and Freddy
Lecue. “Elastic Stream Processing for Distributed Environments”. In:
Internet Computing 19.6 (2015), pp. 54-59. po1: 10.1109/MIC.2015.
118.

Christoph Hochreiner, Michael Vogler, Stefan Schulte, and Schahram
Dustdar. “Cost-Efficient Enactment of Stream Processing Topologies”. In:
PeerJ Computer Science 3 (2017), article el41. pDO1: 10.7717/peerj—
cs.1l41.

https://doi.org/10.1145/2806777.2806847
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1007/978-3-642-17358-5_16
https://doi.org/10.1007/978-3-319-45656-0_3
https://doi.org/10.1109/MC.2006.69
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1109/MIC.2015.118
https://doi.org/10.1109/MIC.2015.118
https://doi.org/10.7717/peerj-cs.141
https://doi.org/10.7717/peerj-cs.141

Bibliography

[131] Christoph Hochreiner, Michael Vogler, Stefan Schulte, and Schahram
Dustdar. “Elastic Stream Processing for the Internet of Things”. In: 9th
IEEFE International Conference on Cloud Computing (CLOUD). IEEE,
2016, pp. 100-107. DOI: 10.1109/CLOUD.2016.0023.

[132] Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”.
In: Neural Computation 9.8 (1997), pp. 1735-1780. DOI: 10.1162/neco.
1997.9.8.1735.

[133] Philipp Hoenisch, Christoph Hochreiner, Dieter Schuller, Stefan Schulte,
Jan Mendling, and Schahram Dustdar. “Cost-Efficient Scheduling of
Elastic Processes in Hybrid Clouds”. In: 8th IEEE International Con-
ference on Cloud Computing (CLOUD). IEEE, 2015, pp. 17-24. DOIL:
10.1109/CLOUD.2015.13.

[134] Philipp Hoenisch, Dieter Schuller, Stefan Schulte, Christoph Hochreiner,
and Schahram Dustdar. “Optimization of Complex Elastic Processes”.
In: IEEE Transactions on Services Computing 9.5 (2016), pp. 700-713.
DOI: 10.1109/TSC.2015.2428246.

[135] Philipp Hoenisch, Stefan Schulte, Schahram Dustdar, and Srikumar Venu-
gopal. “Self-Adaptive Resource Allocation for Elastic Process Execution”.
In: 6th IEEE International Conference on Cloud Computing (CLOUD).
IEEE, 2013, pp. 220-227. DOI: 10.1109/CLOUD.2013.126.

[136] Philipp Hoenisch, Ingo Weber, Stefan Schulte, Liming Zhu, and Alan
Fekete. “Four-Fold Auto-Scaling on a Contemporary Deployment Plat-
form Using Docker Containers”. In: International Conference on Service-
Oriented Computing (ICSOC). LNCS 9435. Springer, 2015, pp. 316-323.
DOI: 10.1007/978-3-662-48616-0_20.

[137] Pablo Hofbauer, Jangwook P. Jung, Tanner J. McArdle, and Brenda M.
Ogle. “Simple Monolayer Differentiation of Murine Cardiomyocytes via
Nutrient Deprivation-Mediated Activation of S-Catenin”. In: Stem Cell
Reviews and Reports 12.6 (2016), pp. 731-743. po1: 10.1007/s12015-
016-9678-0.

[138] Gao Huang, Shiji Song, Jatinder N. D. Gupta, and Cheng Wu. “Semi-
Supervised and Unsupervised Extreme Learning Machines”. In: IEFE
Transactions on Cybernetics 44.12 (2014), pp. 2405-2417. DO1: 10.1109/
TCYB.2014.23073409.

[139] IEEE. IEEE Standard for eXtensible Event Stream (XES) for Achieving
Interoperability in Event Logs and Event Streams. 2016. DOI: 10.1109/
IEEESTD.2016.7740858. IEEE Standard 1849-2016.

[140] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. “Empirical Pre-
diction Models for Adaptive Resource Provisioning in the Cloud”. In:

145

https://doi.org/10.1109/CLOUD.2016.0023
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CLOUD.2015.13
https://doi.org/10.1109/TSC.2015.2428246
https://doi.org/10.1109/CLOUD.2013.126
https://doi.org/10.1007/978-3-662-48616-0_20
https://doi.org/10.1007/s12015-016-9678-0
https://doi.org/10.1007/s12015-016-9678-0
https://doi.org/10.1109/TCYB.2014.2307349
https://doi.org/10.1109/TCYB.2014.2307349
https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1109/IEEESTD.2016.7740858

BIBLIOGRAPHY

146

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Future Generation Computer Systems 28.1 (2012), pp. 155-162. DOI:
10.1016/7j.future.2011.05.027.

Raj Jain. The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Modeling.
Wiley, 1991. 1sBN: 978-0-471-50336-1.

Christian Janiesch, Martin Matzner, and Oliver Miiller. “Beyond Pro-
cess Monitoring: A Proof-of-Concept of Event-Driven Business Activity
Management”. In: Business Process Management Journal 18.4 (2012),
pp- 625-643. DOI: 10.1108/14637151211253765.

Andrew H. Jazwinski. Stochastic Processes and Filtering Theory. Dover,
2007. 1SBN: 978-0-486-46274-5.

Martin Jergler, Mohammad Sadoghi, and Hans-Arno Jacobsen. “Geo-
Distribution of Flexible Business Processes over Publish/Subscribe Para-
digm”. In: 17th International Middleware Conference. ACM, 2016, article
15. DOI1: 10.1145/2988336.2988351.

Dejun Jiang, Guillaume Pierre, and Chi-Hung Chi. “Autonomous Re-
source Provisioning for Multi-Service Web Applications”. In: 19th Inter-
national Conference on World Wide Web (WWW). ACM. 2010, pp. 471
480. DOI: 10.1145/1772690.1772739.

Jing Jiang, Jie Lu, Guangquan Zhang, and Guodong Long. “Optimal
Cloud Resource Auto-Scaling for Web Applications”. In: 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing (CC-
Grid) (2013), pp. 58-65. DOI: 10.1109/CCGrid.2013.73.

Thorsten Joachims. “Text Categorization With Support Vector Machines:
Learning with Many Relevant Features”. In: European Conference on
Machine Learning (ECML). LNCS 1398. Springer. 1998, pp. 137-142.
DOI: 10.1007/BFb0026683.

Prasad Jogalekar and Murray Woodside. “Evaluating the Scalability of
Distributed Systems”. In: IEEE Transactions on Parallel and Distributed
Systems 11.6 (2000), pp. 589-603. DO1: 10.1109/71.862209.

Don Johnson, Alfred Menezes, and Scott Vanstone. “The Elliptic Curve
Digital Signature Algorithm”. In: International Journal of Information
Security 1.1 (2001), pp. 36-63. DOI: 10.1007/s102070100002.

Sandra Johnson, Peter Robinson, and John Brainard. “Sidechains and
Interoperability”. In: CoRR arXiv:1903.04077 (2019).

Rudolph E. Kalman and Richard S. Bucy. “New Results in Linear Fil-
tering and Prediction Theory”. In: Journal of Basic Engineering 83.1
(1961), pp. 95-108. DOI: 10.1115/1.3658902.

https://doi.org/10.1016/j.future.2011.05.027
https://doi.org/10.1108/14637151211253765
https://doi.org/10.1145/2988336.2988351
https://doi.org/10.1145/1772690.1772739
https://doi.org/10.1109/CCGrid.2013.73
https://doi.org/10.1007/BFb0026683
https://doi.org/10.1109/71.862209
https://doi.org/10.1007/s102070100002
https://doi.org/10.1115/1.3658902

Bibliography

[152]

153

[154]

[155]

[156]

[157]

[158]

[159)]

[160]

[161]

Bokyoung Kang, Dongsoo Kim, and Suk-Ho Kang. “Real-Time Business
Process Monitoring Method for Prediction of Abnormal Termination
using KNNI-Based LOF Prediction”. In: Expert Systems with Applications
39.5 (2012), pp. 6061-6068. DOI: 10.1016/j.eswa.2011.12.007.

AV Karthick, E Ramaraj, and R Ganapathy Subramanian. “An Efficient
Multi Queue Job Scheduling for Cloud Computing”. In: World Congress
on Computing and Communication Technologies (WCCCT). IEEE. 2014,
pp. 164-166. DOI: 10.1109/WCCCT.2014. 8.

Arun Kejariwal and John Allspaw. The Art of Capacity Planning: Scaling
Web Resources in the Cloud. O’Reilly, 2017. 1SBN: 978-1-491-93920-8.

Jeffrey O. Kephart and David M. Chess. “The Vision of Autonomic
Computing”. In: Computer 36.1 (2003), pp. 41-50. DO1: 10.1109/MC.
2003.1160055.

Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. “Workload
Characterization and Prediction in the Cloud: A Multiple Time Series
Approach”. In: IEEE Network Operations and Management Symposium.
IEEE. 2012, pp. 1287-1294. po1: 10.1109/NOMS.2012.6212065.

Jonghoon Kim, Jisu Hong, and Hyunjin Park. “Prospects of Deep Learn-
ing for Medical Imaging”. In: Precision and Future Medicine 2.2 (2018),
pp. 37-52. DOI: 10.23838/pfm.2018.00030.

Markus Klems, Jacob Eberhardt, Stefan Tai, Steffen Hértlein, Simon
Buchholz, and Ahmed Tidjani. “Trustless Intermediation in Blockchain-
Based Decentralized Service Marketplaces”. In: International Conference
on Service-Oriented Computing (ICSOC). Springer, 2017, pp. 731-739.
DOI: 10.1007/978-3-319-69035-3_53.

David Knuplesch, Manfred Reichert, Ridiger Pryss, Walid Fdhila, and Ste-
fanie Rinderle-Ma. “Ensuring Compliance of Distributed and Collabora-
tive Workflows”. In: 9th IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom).
IEEE. 2013, pp. 133-142. por: 10.4108/icst .collaboratecom.
2013.2540095.

Falko Koetter and Monika Kochanowski. “A Model-Driven Approach for
Event-based Business Process Monitoring”. In: Information Systems and
e-Business Management 13.1 (2015), pp. 5-36. DOI: 10.1007/s10257—
014-0233-8.

Ron Kohavi. “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection”. In: International Joint Conference on
Artificial Intelligence (IJCAI). Morgan Kaufmann. 1995, pp. 1137-1143.
ISBN: 1-55860-363-8.

147

https://doi.org/10.1016/j.eswa.2011.12.007
https://doi.org/10.1109/WCCCT.2014.8
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/NOMS.2012.6212065
https://doi.org/10.23838/pfm.2018.00030
https://doi.org/10.1007/978-3-319-69035-3_53
https://doi.org/10.4108/icst.collaboratecom.2013.254095
https://doi.org/10.4108/icst.collaboratecom.2013.254095
https://doi.org/10.1007/s10257-014-0233-8
https://doi.org/10.1007/s10257-014-0233-8

BIBLIOGRAPHY

148

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Jaehyun Kong, Jae-Yoon Jung, and Jinwoo Park. “Event-Driven Service
Coordination for Business Process Integration in Ubiquitous Enterprises”.
In: Computers € Industrial Engineering 57.1 (2009), pp. 14-26. DOI:
10.1016/73.cie.2008.08.0109.

Madhukar Korupolu, Aameek Singh, and Bhuvan Bamba. “Coupled
Placement in Modern Data Centers”. In: IEEE International Symposium
on Parallel & Distributed Processing (IPDPS). IEEE. 2009, pp. 1-12.
DOI: 10.1109/IPDPS.2009.5161067.

Julian Krumeich, Benjamin Weis, Dirk Werth, and Peter Loos. “Event-
Driven Business Process Management: Where are we Now?” In: Business
Process Management Journal 20.4 (2014), pp. 615-633. boI: 10.1108/
BPMJ-07-2013-0092.

Karthik Kumar and Yung-Hsiang Lu. “Cloud Computing for Mobile
Users: Can Offloading Computation Save Energy?” In: Computer 43.4
(2010), pp. 51-56. DOI: 10.1109/MC.2010. 98.

Ewnetu Bayuh Lakew, Cristian Klein, Francisco Hernandez-Rodriguez,
and Erik Elmroth. “Towards Faster Response Time Models for Vertical
Elasticity”. In: IEEE/ACM 7th International Conference on Utility and
Cloud Computing (UCC). IEEE. 2014, pp. 560-565. bo1: 10.1109/UCC.
2014.86.

Pat Langley. Elements of Machine Learning. Morgan Kaufmann, 1996.
ISBN: 1-55860-301-8.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In:
Nature 521.7553 (2015), pp. 436-444. pOo1: 10.1038/naturel4539.

Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst.
“Discovering Block-Structured Process Models from Event Logs — A
Constructive Approach”. In: International Conference on Application
and Theory of Petri Nets and Concurrency (PETRI NETS). Springer,
2013, pp. 311-329. DOL: 10.1007/978-3-642-38697-8_17.

Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. “Cost-
Based Optimization of Service Compositions”. In: IEEE Transactions on
Services Computing 6.2 (2013), pp. 239-251. DOI: 10.1109/TSC.2011.
53.

Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger,
and Schahram Dustdar. “Cost-Efficient and Application SLA-Aware
Client Side Request Scheduling in an Infrastructure-as-a-Service Cloud”.
In: 5th IEEE International Conference on Cloud Computing (CLOUD).
IEEE, 2012, pp. 213-220. po1: 10.1109/CLOUD.2012.21.

https://doi.org/10.1016/j.cie.2008.08.019
https://doi.org/10.1109/IPDPS.2009.5161067
https://doi.org/10.1108/BPMJ-07-2013-0092
https://doi.org/10.1108/BPMJ-07-2013-0092
https://doi.org/10.1109/MC.2010.98
https://doi.org/10.1109/UCC.2014.86
https://doi.org/10.1109/UCC.2014.86
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1109/TSC.2011.53
https://doi.org/10.1109/TSC.2011.53
https://doi.org/10.1109/CLOUD.2012.21

Bibliography

[172] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and Thomas
Sandholm. “What’s Inside the Cloud? An Architectural Map of the Cloud
Landscape”. In: ICSE Workshop on Software Engineering Challenges of
Cloud Computing. IEEE. 2009, pp. 23-31. DO1: 10.1109/CLOUD.2009.
5071529.

[173] Anna Leontjeva, Raffaele Conforti, Chiara Di Francescomarino, Marlon
Dumas, and Fabrizio Maria Maggi. “Complex Symbolic Sequence Encod-
ings for Predictive Monitoring of Business Processes”. In: International
Conference on Business Process Management (BPM). Springer, 2015,
pp- 297-313. po1: 10.1007/978-3-319-23063-4_21.

[174] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. “A Distributed
Service-oriented Architecture for Business Process Execution”. In: ACM
Transactions on the Web 4.1 (2010), article 2. DOI: 10.1145/1658373.
1658375.

[175] Jimmy Lin and Alek Kolcz. “Large-Scale Machine Learning at Twit-
ter”. In: ACM SIGMOD International Conference on Management of
Data (SIGMOD). ACM. 2012, pp. 793-804. DOI: 10.1145/2213836.
2213958.

[176] Tony Lindeberg. “Scale-Space for Discrete Signals”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 12.3 (1990), pp. 234
254. DOI: 10.1109/34.49051.

[177] Fabio Lopez-Pires and Benjamin Baran. “Virtual Machine Placement
Literature Review”. In: CoRR arXiv:1506.01509 (2015).

[178] Tania Lorido-Botran, José Miguel-Alonso, and Jose Antonio Lozano. “A
Review of Auto-Scaling Techniques for Elastic Applications in Cloud
Environments”. In: Journal of Grid Computing 12.4 (2014), pp. 559-592.
DOI: https://doi.org/10.1007/s10723-014-9314-7.

[179] David Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley,
2002. 1SBN: 978-0-201-72789-0.

[180] Kasper Grud Skat Madsen, Yongluan Zhou, and Jianneng Cao. “Integra-
tive Dynamic Reconfiguration in a Parallel Stream Processing Engine”.
In: 83rd IEEE International Conference on Data Engineering (ICDE).
IEEE. 2017, pp. 227-230. DOI: 10.1109/ICDE.2017.81.

[181] Carolyn Mair, Gada Kadoda, Martin Lefley, Keith Phalp, Chris Schofield,
Martin Shepperd, and Steve Webster. “An Investigation of Machine
Learning Based Prediction Systems”. In: Journal of Systems and Software
53.1 (2000), pp. 23-29. DOI: 10.1016/S0164-1212 (00) 00005-4.

149

https://doi.org/10.1109/CLOUD.2009.5071529
https://doi.org/10.1109/CLOUD.2009.5071529
https://doi.org/10.1007/978-3-319-23063-4_21
https://doi.org/10.1145/1658373.1658375
https://doi.org/10.1145/1658373.1658375
https://doi.org/10.1145/2213836.2213958
https://doi.org/10.1145/2213836.2213958
https://doi.org/10.1109/34.49051
https://doi.org/https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1109/ICDE.2017.81
https://doi.org/10.1016/S0164-1212(00)00005-4

BIBLIOGRAPHY

150

[182]

[183]

[184]

[185)]

[186]

[187]

[188]

[189)]

[190]

[191]

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze.
Introduction to Information Retrieval. Cambridge University Press, 2008.
ISBN: 978-0521865715.

Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical
Natural Language Processing. MIT Press, 1999. 1SBN: 978-0-262-13360-9.

Ronny S Mans, M. H. Schonenberg, Minseok Song, Wil M. P. van der
Aalst, and Piet J. M. Bakker. “Application of Process Mining in Health-
care — A Case Study in a Dutch Hospital”. In: International Joint Confer-
ence on Biomedical Engineering Systems and Technologies (BIOSTEC).
CCIS 25. Springer. 2008, pp. 425-438. pOo1: 10.1007/978-3-540-
92219-3_32.

Ming Mao and Marty Humphrey. “Auto-Scaling to Minimize Cost and
Meet Application Deadlines in Cloud Workflows”. In: International Con-
ference for High Performance Computing, Networking, Storage and Anal-
YS1S (SC). IEEE. 2011, article 49. po1: 10.1145/2063384.2063449.

Karl Mason, Martin Duggan, Enda Barrett, Jim Duggan, and Enda How-
ley. “Predicting Host CPU Utilization in the Cloud using Evolutionary
Neural Networks”. In: Future Generation Computer Systems 86 (2018),
pp- 162-173. bor: 10.1016/j.future.2018.03.040.

Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitari, and Yuji Kaneda.
“Subject Independent Facial Expression Recognition with Robust Face
Detection using a Convolutional Neural Network”. In: Neural Networks
16.5 (2003), pp. 555-559. DOI: 10.1016/50893-6080 (03) 00115-1.

Brian W. Matthews. “Comparison of the Predicted and Observed Sec-
ondary Structure of T4 Phage Lysozyme”. In: Biochimica et Biophys-
ica Acta (BBA) — Protein Structure 405.2 (1975), pp. 442-451. DO
10.1016/0005-2795(75)90109-9.

Michael Maurer, Ivona Brandic, and Rizos Sakellariou. “Self-Adaptive and
Resource-Efficient SLA Enactment for Cloud Computing Infrastructures”.
In: 5th IEEE International Conference on Cloud Computing (CLOUD).
IEEE, 2012, pp. 368-375. DOI: 10.1109/CLOUD.2012.55.

Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the
Ideas Immanent in Nervous Activity”. In: The Bulletin of Mathematical
Biophysics 5.4 (1943), pp. 115-133. por: 10.1007/BF02478259.

Peter M. Mell and Timothy Grance. The NIST Definition of Cloud
Computing. Tech. rep. SP 800-145. National Institute of Standards &
Technology, 2011.

https://doi.org/10.1007/978-3-540-92219-3_32
https://doi.org/10.1007/978-3-540-92219-3_32
https://doi.org/10.1145/2063384.2063449
https://doi.org/10.1016/j.future.2018.03.040
https://doi.org/10.1016/S0893-6080(03)00115-1
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1109/CLOUD.2012.55
https://doi.org/10.1007/BF02478259

Bibliography

[192]

(193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Daniel A. Menascé. “TPC-W: A Benchmark for E-Commerce”. In: IEEE
Internet Computing 6.3 (2002), pp. 83-87. DOI: 10.1109/MIC.2002.
1003136.

Gabriele Mencagli, Marco Vanneschi, and Emanuele Vespa. “A Coop-
erative Predictive Control Approach to Improve the Reconfiguration
Stability of Adaptive Distributed Parallel Applications”. In: ACM Trans-
actions on Autonomous and Adaptive Systems 9.1 (2014), article 2. DOL:
10.1145/2567929.

Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. “Improving the Scalabil-
ity of Data Center Networks with Traffic-Aware Virtual Machine Place-
ment”. In: 29th IEEE Conference on Computer Communications (INFO-
COM). IEEE, 2010, pp. 1-9. DoOI: 10.1109/INFCOM.2010.5461930.

Mark F. Mergen, Volkmar Uhlig, Orran Krieger, and Jimi Xenidis. “Vir-
tualization for High-Performance Computing”. In: ACM SIGOPS Oper-
ating Systems Review 40.2 (2006), pp. 8-11. DO1: 10.1145/1131322.
1131328.

Metronome: Owner’s Manual. URL: https://www.metronome.io/
pdf/owners_manual . pdf. White Paper. Version 0.967, 2018-04-17.
Accessed 2019-05-05.

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and Schahram
Dustdar. “MELA: Monitoring and Analyzing Elasticity of Cloud Services”.
In: 5th IEEE International Conference on Cloud Computing Technol-
ogy and Science (CloudCom). IEEE. 2013, pp. 80-87. po1: 10.1109/
CloudCom.2013.18.

Justin D Moore, Jeffrey S Chase, Parthasarathy Ranganathan, and
Ratnesh K Sharma. “Making Scheduling "Cool": Temperature-Aware
Workload Placement in Data Centers”. In: USENIX Annual Technical
Conference (ATEC). USENIX, 2005, pp. 61-75.

Laura R. Moore, Kathryn Bean, and Tariq Ellahi. “Transforming Re-
active Auto-Scaling into Proactive Auto-Scaling”. In: 3rd International
Workshop on Cloud Data and Platforms (CloudDP). ACM. 2013, pp. 7-12.
DOI: 10.1145/2460756.2460758.

Henry Muccini, Mohammad Sharaf, and Danny Weyns. “Self-Adaptation
for Cyber-Physical Systems: A Systematic Literature Review”. In: 11th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). ACM. 2016, pp. 75-81. por: 10.1145/
2897053.28970609.

151

https://doi.org/10.1109/MIC.2002.1003136
https://doi.org/10.1109/MIC.2002.1003136
https://doi.org/10.1145/2567929
https://doi.org/10.1109/INFCOM.2010.5461930
https://doi.org/10.1145/1131322.1131328
https://doi.org/10.1145/1131322.1131328
https://www.metronome.io/pdf/owners_manual.pdf
https://www.metronome.io/pdf/owners_manual.pdf
https://doi.org/10.1109/CloudCom.2013.18
https://doi.org/10.1109/CloudCom.2013.18
https://doi.org/10.1145/2460756.2460758
https://doi.org/10.1145/2897053.2897069
https://doi.org/10.1145/2897053.2897069

BIBLIOGRAPHY

152

[201]

[202]

203]

[204]

205]

[206]

[207]

208]

209]

[210]

Michael zur Muehlen and Robert Shapiro. “Business Process Analytics”.
In: Handbook on Business Process Management 2. Springer, 2015, pp. 243—
263. DOI: 10.1007/978-3-642-45103-4_10.

Gero Miihl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based
Systems. Springer, 2006. DOI: 10.1007/3-540-32653-7.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
URL: https://bitcoin.org/bitcoin.pdf. White Paper. Accessed
2019-05-05.

Christian Napoli, Giuseppe Pappalardo, and Emiliano Tramontana. “A
Hybrid Neuro-Wavelet Predictor for QoS Control and Stability”. In:
Congress of the Italian Association for Artificial Intelligence (AI*IA).
LNCS 8249. Springer. 2013, pp. 527-538. bo1: 10.1007/978-3-319-
03524-6_45.

Yurii Nesterov. “A Method of Solving a Convex Programming Problem
with Convergence Rate O(1/k?)”. In: Soviet Mathematics Doklady 27.2
(1983), pp. 372-376. zBL: 0535.90071.

Yurii Nesterov. “Introductory Lectures on Convex Optimization”. In:
Applied Optimization 87 (2004). zBL: 1086.90045.

Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers,
Karin Strauss, and Eric S. Chung. Accelerating Deep Convolutional
Neural Networks using Specialized Hardware. 2015. URL: https://
www.microsoft.com/en-us/research/wp-content/uploads/
2016/02/CNN20Whitepaper.pdf. White Paper, Microsoft Research.
Version 2015-02-22. Accessed 2019-05-05.

Claus Pahl and Brian Lee. “Containers and Clusters for Edge Cloud
Architectures — A Technology Review”. In: 3rd International Conference
on Future Internet of Things and Cloud. IEEE. 2015, pp. 379-386. DOI:
10.1109/FiCloud.2015.35.

Jigar Patel, Sahil Shah, Priyank Thakkar, and K. Kotecha. “Predicting
Stock and Stock Price Index Movement using Trend Deterministic Data
Preparation and Machine Learning Techniques”. In: Ezpert Systems with
Applications 42.1 (2015), pp. 259-268. DOI: 10.1016/j.eswa.2014.
07.040.

Riccardo Petrolo, Valeria Loscri, and Nathalie Mitton. “Towards a Smart
City Based on Cloud of Things, a Survey on the Smart City Vision
and Paradigms”. In: Transactions on Emerging Telecommunications
Technologies 28.1 (2017), article €2931. DOI: 10.1002/ett.2931.

https://doi.org/10.1007/978-3-642-45103-4_10
https://doi.org/10.1007/3-540-32653-7
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-03524-6_45
https://doi.org/10.1007/978-3-319-03524-6_45
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf
https://doi.org/10.1109/FiCloud.2015.35
https://doi.org/10.1016/j.eswa.2014.07.040
https://doi.org/10.1016/j.eswa.2014.07.040
https://doi.org/10.1002/ett.2931

Bibliography

[211] Anastasiia Pika, Wil M. P. van der Aalst, Colin J. Fidge, Arthur H. M.
ter Hofstede, and Moe T. Wynn. “Predicting Deadline Transgressions
Using Event Logs”. In: International Conference on Business Process
Management (BPM). LNBIP 132. Springer, 2013, pp. 211-216. DOI:
10.1007/978-3-642-36285-9_22.

[212] Anastasiia Pika, Wil M. P. van der Aalst, Moe Thandar Wynn, Colin J.
Fidge, and Arthur H. M. ter Hofstede. “Evaluating and Predicting Overall
Process Risk Using Event Logs”. In: Information Sciences 352-353 (2016),
pp. 98-120. DOI: 10.1016/5.1ins.2016.03.003.

[213] David Martin Powers. “Evaluation: From Precision, Recall and F-Measure
to ROC, Informedness, Markedness and Correlation”. In: Journal of
Machine Learning Technologies 2.1 (2011), pp. 37-63. 1SSN: 2229-3981.

[214] Kevin L. Priddy and Paul E. Keller. Artificial Neural Networks: an
Introduction. Vol. 68. SPIE, 2005. 1SBN: 978-0-819-45987-9.

[215] Michael O. Rabin. “Probabilistic Automata”. In: Information and Control
6.3 (1963), pp. 230-245. DOI: 10.1016/50019-9958 (63) 90290-0.

[216] Carl Edward Rasmussen. “Gaussian Processes in Machine Learning”. In:

Summer School on Machine Learning (ML). LNCS 3176. Springer. 2003,
pp- 63-71. DO1: 10.1007/978-3-540-28650-9_4.

[217] Siraj Raval. Decentralized Applications: Harnessing Bitcoin’s Blockchain
Technology. O’Reilly, 2016. 1SBN: 978-1491924549.

[218] William John Reichmann. Use and Abuse of Statistics. Penguin, 1964.
ISBN: 978-0-140-20707-1.

[219] Sebastian Rohjans, Christian Déanekas, and Mathias Uslar. “Requirements
for Smart Grid ICT-Architectures”. In: 8rd IEEE PES Innovative Smart
Grid Technologies Furope (ISGT). IEEE, 2012, pp. 1-8. bor: 10.1109/
ISGTEurope.2012.6465617.

[220] Raul Rojas. Neural Networks: A Systematic Introduction. Springer, 2013.
DOI: 10.1007/978-3-642-61068-4.

[221] Anne Rozinat and Wil M. P. van der Aalst. “Decision Mining in ProM”.
In: International Conference on Business Process Management (BPM).
LNCS 4102. Springer, 2006, pp. 420-425. bo1: 10.1007/11841760_33.

[222] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learn-
ing Representations by Back-Propagating Errors”. In: Cognitive Modeling.
MIT Press, 1986. 1SBN: 9-780-2-626-6116-4.

[223] Mohammad Sadoghi, Martin Jergler, Hans-Arno Jacobsen, Richard Hull,
and Roman Vaculin. “Safe Distribution and Parallel Execution of Data-

153

https://doi.org/10.1007/978-3-642-36285-9_22
https://doi.org/10.1016/j.ins.2016.03.003
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1109/ISGTEurope.2012.6465617
https://doi.org/10.1109/ISGTEurope.2012.6465617
https://doi.org/10.1007/978-3-642-61068-4
https://doi.org/10.1007/11841760_33

BIBLIOGRAPHY

154

224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

Centric Workflows over the Publish/Subscribe Abstraction”. In: IEEE
Transactions on Knowledge and Data Engineering 27.10 (2015), pp. 2824~
2838. po1: 10.1109/TKDE.2015.2421331.

Felix Salfner and Miroslaw Malek. “Using Hidden Semi-Markov Models
for Effective Online Failure Prediction”. In: 26th IEEFE International
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2007, pp. 161
174. pOo1: 10.1109/SRDS.2007.35.

Arto Salomaa and Ian N. Sneddon. Theory of Automata. Pergamon, 1969.
ISBN: 978-0-080-13376-8.

Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, and Rajkumar Buyya.
“Heterogeneity in Mobile Cloud Computing: Taxonomy and Open Chal-
lenges”. In: IEEE Communications Surveys & Tutorials 16.1 (2014),
pp. 369-392. po1: 10.1109/SURV.2013.050113.00090.

Madhulina Sarkar, Triparna Mondal, Sarbani Roy, and Nandini Mukher-
jee. “Resource Requirement Prediction using Clone Detection Technique”.
In: Future Generation Computer Systems 29.4 (2013), pp. 936-952. DOT:
10.1016/7j.future.2012.09.010.

Ramadass Sathya and Annamma Abraham. “Comparison of Supervised
and Unsupervised Learning Algorithms for Pattern Classification”. In:
International Journal of Advanced Research in Artificial Intelligence 2.2
(2013), pp. 34-38. DOI: 10.14569/TJARAT.2013.020206.

Stefan Schulte, Philipp Hoenisch, Christoph Hochreiner, Schahram Dust-
dar, Matthias Klusch, and Dieter Schuller. “Towards Process Support
for Cloud Manufacturing”. In: 18th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC). IEEE, 2014, pp. 142-149.
URL: 10.1109/EDOC.2014.28.

Stefan Schulte, Philipp Hoenisch, Srikumar Venugopal, and Schahram
Dustdar. “Introducing the Vienna Platform for Elastic Processes”. In: In-
ternational Conference on Service-Oriented Computing (ICSOC). LNCS
7759. Springer, 2013, pp. 179-190. po1: 10.1007/978-3-642-37804—
1_19.

Stefan Schulte, Philipp Hoenisch, Srikumar Venugopal, and Schahram
Dustdar. “Realizing Elastic Processes with ViePEP”. In: International
Conference on Service-Oriented Computing (ICSOC). LNCS 7759. Springer,
2013, pp. 439-442. DOL: 10.1007/978-3-642-37804—-1_48.

Stefan Schulte, Christian Janiesch, Srikumar Venugopal, Ingo Weber, and
Philipp Hoenisch. “Elastic Business Process Management: State of the
Art and Open Challenges for BPM in the Cloud”. In: Future Generation

https://doi.org/10.1109/TKDE.2015.2421331
https://doi.org/10.1109/SRDS.2007.35
https://doi.org/10.1109/SURV.2013.050113.00090
https://doi.org/10.1016/j.future.2012.09.010
https://doi.org/10.14569/IJARAI.2013.020206
10.1109/EDOC.2014.28
https://doi.org/10.1007/978-3-642-37804-1_19
https://doi.org/10.1007/978-3-642-37804-1_19
https://doi.org/10.1007/978-3-642-37804-1_48

Bibliography

Computer Systems 46 (2015), pp. 36-50. DO1: 10.1016/ j. future.
2014.09.005.

[233] Bernd Schwegmann, Martin Matzner, and Christian Janiesch. “A Method
and Tool for Predictive Event-Driven Process Analytics”. In: Wirtschaftsin-
formatik. 2013, pp. 721-735.

[234] Fabrizio Sebastiani. “Machine Learning in Automated Text Categoriza-
tion”. In: ACM Computing Surveys 34.1 (2002), pp. 1-47. DOI1: 10.1145/
505282.505283.

[235] Ivan Selesnick. Total Variation Denoising (an MM Algorithm). 2012.
NYU Polytechnic School of Engineering Lecture Notes.

[236] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
“CloudScale: Elastic Resource Scaling for Multi-Tenant Cloud Systems”.
In: 2nd ACM Symposium on Cloud Computing (SOCC). ACM. 2011,
article 5. DOI: 10.1145/2038916.2038921.

[237] Marten Sigwart, Christoph Hochreiner, Michael Borkowski, and Stefan
Schulte. FakeLoad: An Open-Source Load Generator. Tech. rep. TUV-
1942-2018-01. Distributed Systems Group, TU Wien, 2018.

[238] Sukgpal Singh and Inderveer Chana. “QoS-Aware Autonomic Resource
Management in Cloud Computing: A Systematic Review”. In: ACM
Computing Surveys 48.3 (2016), article 42. DOI: 10.1145/2843889.

[239] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and
Philipp Leitner. “Optimized IoT Service Placement in the Fog”. In:
Service Oriented Computing and Applications 11.4 (2017), pp. 427-443.
DOI: 10.1007/s11761-017-0219-8.

[240] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. “Beyond
Accuracy, F-Score and ROC: A Family of Discriminant Measures for
Performance Evaluation”. In: Australian Joint Conference on Artificial
Intelligence (AI). LNCS 4304. Springer, 2006, pp. 1015-1021. po1: 10.
1007/11941439_114.

[241] Jorge Sola and José Sevilla. “Importance of Input Data Normalization
for the Application of Neural Networks to Complex Industrial Problems”.
In: IEEE Transactions on Nuclear Science 44.3/3 (1997), pp. 1464-1468.
DOI: 10.1109/23.589532.

[242] Florian Stertz, Stefanie Rinderle-Ma, Tobias Hildebrandt, and Jiirgen
Mangler. “Testing Processes with Service Invocation: Advanced Logging
in CPEE”. In: International Conference on Service-Oriented Computing
(ICSOC). LNCS 10380. Springer, 2016, pp. 189-193. DOo1: 10.1007/978-
3-319-68136-8_22.

155

https://doi.org/10.1016/j.future.2014.09.005
https://doi.org/10.1016/j.future.2014.09.005
https://doi.org/10.1145/505282.505283
https://doi.org/10.1145/505282.505283
https://doi.org/10.1145/2038916.2038921
https://doi.org/10.1145/2843889
https://doi.org/10.1007/s11761-017-0219-8
https://doi.org/10.1007/11941439_114
https://doi.org/10.1007/11941439_114
https://doi.org/10.1109/23.589532
https://doi.org/10.1007/978-3-319-68136-8_22
https://doi.org/10.1007/978-3-319-68136-8_22

BIBLIOGRAPHY

156

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

Gerhard Stiirmer, Jiirgen Mangler, and Erich Schikuta. “Building a
Modular Service Oriented Workflow Engine”. In: IEEE International
Conference on Service-Oriented Computing and Applications (SOCA).
IEEE, 2009, pp. 1-4. DOI: 10.1109/SOCA.2009.5410270.

Suriadi Suriadi, Chun Ouyang, Wil M. P. van der Aalst, and Arthur
H. M. ter Hofstede. “Root Cause Analysis with Enriched Process Logs”.
In: International Conference on Business Process Management (BPM).
LNBIP 132. Springer, 2013, pp. 174-186. po1: 10.1007/978-3-642—-
36285-9_18.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On
the Importance of Initialization and Momentum in Deep Learning”. In:
International Conference on Machine Learning (ICML). PMLR, 2013,
pp. 1139-1147. 1SBN: 978-1-629-93306-1.

Melanie Swan. “Blockchain for Business: Next-Generation Enterprise
Artificial Intelligence Systems”. In: Advances in Computers 111 (2018),
pp- 121-162. po1: 10.1016/bs.adcom.2018.03.013.

Claudia Szabo and Trent Kroeger. “Evolving Multi-objective Strategies
for Task Allocation of Scientific Workflows on Public Clouds”. In: IEEFE
Congress on Evolutionary Computation (CEC). IEEE, 2012, pp. 1-8. DOL:
10.1109/CEC.2012.6256556.

Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems:
Principles and Paradigms. Prentice-Hall, 2007. 1SBN: 978-1-530-28175-6.

Feilong Tang, Minyi Guo, Mianxiong Dong, Minglu Li, and Hu Guan.
“Towards Context-Aware Workflow Management for Ubiquitous Comput-
ing”. In: International Conference on Embedded Software and Systems
(ICESS). IEEE, 2008, pp. 221-228. por: 10.1109/ICESS.2008.83.

Irene Teinemaa, Marlon Dumas, Fabrizio Maria Maggi, and Chiara Di
Francescomarino. “Predictive Business Process Monitoring with Struc-
tured and Unstructured Data”. In: International Conference on Business
Process Management (BPM). LNCS 9850. Springer, 2016, pp. 401-417.
DOI: 10.1007/978-3-319-45348-4_23.

Dennis Upper. “The Unsuccessful Self-treatment of a Case of Writer’s

Block”. In: Journal of Applied Behavior Analysis 7.3 (1974), pp. 497-497.
DOI: 10.1901/jaba.1974.7-497a.

Haleh Vafaie and Kenneth De Jong. “Genetic Algorithms as a Tool for
Feature Selection in Machine Learning”. In: 4th International Conference
on Tools with Artificial Intelligence (TAI). 1992, pp. 200-203. DOI: 10.
1109/TATI.1992.246402.

https://doi.org/10.1109/SOCA.2009.5410270
https://doi.org/10.1007/978-3-642-36285-9_18
https://doi.org/10.1007/978-3-642-36285-9_18
https://doi.org/10.1016/bs.adcom.2018.03.013
https://doi.org/10.1109/CEC.2012.6256556
https://doi.org/10.1109/ICESS.2008.83
https://doi.org/10.1007/978-3-319-45348-4_23
https://doi.org/10.1901/jaba.1974.7-497a
https://doi.org/10.1109/TAI.1992.246402
https://doi.org/10.1109/TAI.1992.246402

Bibliography

253

[254]

[255]

[256]

[257]

[258]

[259]

260]

[261]

Mohammad Valipour, Mohammad Ebrahim Banihabib, and Seyyed Mah-
mood Reza Behbahani. “Comparison of the ARMA, ARIMA, and the Au-
toregressive Artificial Neural Network Models in Forecasting the Monthly
Inflow of Dez Dam Reservoir”. In: Journal of Hydrology 476 (2013),
pp. 433-441. pOI: 10.1016/5. jhydrol.2012.11.017.

Luis M. Vaquero and Luis Rodero-Merino. “Finding your Way in the
Fog: Towards a Comprehensive Definition of Fog Computing”. In: ACM
SIGCOMM Computer Communication Review 44.5 (2014), pp. 27-32.
DOI: 10.1145/2677046.2677052

Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
“A Break in the Clouds: Towards a Cloud Definition”. In: ACM SIG-
COMM Computer Communication Review 39.1 (2008), pp. 50-55. DOI:
10.1145/1496091.1496100.

Nedeljko Vasi¢, Dejan Novakovié, Svetozar Miucin, Dejan Kosti¢, and
Ricardo Bianchini. “DejaVu: Accelerating Resource Allocation in Virtu-
alized Environments”. In: 17th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
ACM. 2012, pp. 423-436. DOI: 10.1145/2150976.2151021.

Chemuduri Viswanath and C. Valliyammai. “CPU Load Prediction using
ANFIS for Grid Computing”. In: IEEFE International Conference On
Advances In Engineering, Science And Management (ICAESM). IEEE.
2012, pp. 343-348. 1SBN: 978-81-909042-2-3.

Marko Vukoli¢. “The Quest for Scalable Blockchain Fabric: Proof-of-Work
vs. BFT Replication”. In: International Workshop on Open Problems
in Network Security. LNCS 9591. Springer, 2015, pp. 112-125. DOI:
10.1007/978-3-319-39028-4_09.

Lizhe Wang, Gregor Von Laszewski, Jai Dayal, Xi He, Andrew J Younge,
and Thomas R Furlani. “Towards Thermal Aware Workload Scheduling in
a Data Center”. In: 10th International Symposium on Pervasive Systems,

Algorithms, and Networks (ISPAN). IEEE. 2009, pp. 116-122. por: 10.

1109/I-SPAN.2009.22.
Will Warren and Amir Bandeali. 0z: An Open Protocol for Decentralized

Ezxchange on the Ethereum Blockchain. URL: https://0Oxproject.

com/pdfs/0x_white_paper.pdf. White Paper. Version 2017-02-21.
Accessed 2019-05-05.

Christopher J. C. H. Watkins and Peter Dayan. “Q-Learning”. In: Ma-
chine Learning 8.3-4 (1992), pp. 279-292. po1: 10.1007/BF00992698.

157

https://doi.org/10.1016/j.jhydrol.2012.11.017
https://doi.org/10.1145/2677046.2677052
https://doi.org/10.1145/1496091.1496100
https://doi.org/10.1145/2150976.2151021
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1109/I-SPAN.2009.22
https://doi.org/10.1109/I-SPAN.2009.22
https://0xproject.com/pdfs/0x_white_paper.pdf
https://0xproject.com/pdfs/0x_white_paper.pdf
https://doi.org/10.1007/BF00992698

BIBLIOGRAPHY

158

[262]

263]

[264]

[265]

[266]

[267]

268]

269

270

271]

Bernard Lewis Welch. “The Generalization of ‘Student’s’ Problem when
Several Different Population Variances are Involved”. In: Biometrika
34.1-2 (1947), pp. 28-35. DOI: 10.1093/biomet/34.1-2.28.

Mathias Weske. Business Process Management: Concepts, Languages,
Architectures. Springer, 2012. DOI: 10.1007/978-3-540-73522-09.

Gerhard Widmer and Miroslav Kubat. “Learning in the Presence of
Concept Drift and Hidden Contexts”. In: Machine Learning 23.1 (1996),
pp. 69-101. DOI: 10.1023/A:1018046501280.

Roel Wieringa. Design Science Methodology for Information Systems
and Software Engineering. Springer, 2014. DOI: 10.1007/978-3-662-
43839-8.

J. R. Willett, Maran Hidskes, David Johnston, Ron Gross, and Marv
Schneider. Omni Protocol Specification. 2017. URL: https://github.
com/OmniLayer/spec. Version 0.5, 2017-01-23. Accessed 2019-05-05.

Gavin Wood. PolkaDot: Vision for a Heterogeneous Multi-Chain Frame-
work. 2016. URL: https://polkadot .network/PolkaDotPaper.
pdf. White Paper. Draft 1, Version 0.1.0, 2016-11-10. Accessed 2019-05-
05.

Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. “SLA-Based
Resource Allocation for Software as a Service Provider (SaaS) in Cloud
Computing Environments”. In: 11th IEEE/ACM International Sympo-
stum on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2011,
pp- 195-204. por: 10.1109/CCGrid.2011.51.

Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. “T-Storm: Traffic-
Aware Online Scheduling in Storm”. In: 34th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE. 2014, pp. 535—
544. DOI: 10.1109/ICDCS.2014.61.

Hongming Yang, Jun Yi, Junhua Zhao, and ZhaoYang Dong. “Extreme
Learning Machine Based Genetic Algorithm and its Application in Power
System Economic Dispatch”. In: Neurocomputing 102 (2013), pp. 154-162.
DOI: 10.1016/7j.neucom.2011.12.054.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-
man, Michael J. Franklin, Ali Ghodsi, Joseph Gonzales, Scott Shenker,
and Ton Stoica. “Apache Spark: A Unified Engine for Big Data Process-
ing”. In: Communications of the ACM 59.11 (2016), pp. 56—65. DOI:
10.1145/2934664.

https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1007/978-3-540-73522-9
https://doi.org/10.1023/A:1018046501280
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://github.com/OmniLayer/spec
https://github.com/OmniLayer/spec
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://doi.org/10.1109/CCGrid.2011.51
https://doi.org/10.1109/ICDCS.2014.61
https://doi.org/10.1016/j.neucom.2011.12.054
https://doi.org/10.1145/2934664

Bibliography

[272]

273

[274]

[275]

[276]

277]

278]

279]

[280]

Ahmed I Zayed. Handbook of Function and Generalized Function Trans-
formations. CRC, 1996. 1SBN: 978-0-849-38076-1.

Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-
Hung Chung, and Yun Li. “Cloud Computing Resource Scheduling and
a Survey of Its Evolutionary Approaches”. In: ACM Computing Surveys
(CSUR) 47.4 (2015), article 63. DO1: 10.1145/2788397.

Qi Zhang, Lu Cheng, and Raouf Boutaba. “Cloud Computing: State-of-
the-Art and Research Challenges”. In: Journal of Internet Services and
Applications 1.1 (2010), pp. 7-18. boI: 10.1007/s13174-010-0007-
6.

Taiyang Zhang and Loong Wang. Republic Protocol: A decentralized
dark pool exchange providing atomic swaps for Ethereum-based assets
and Bitcoin. URL: https://releases.republicprotocol.com/
whitepaper/1.0.0/whitepaper_1.0.0.pdf. White Paper.
Version 2017-12-18. Accessed 2019-05-05.

Zhili Zhao and Adrian Paschke. “Event-Driven Scientific Workflow Exe-
cution”. In: International Conference on Business Process Management
(BPM). LNBIP 132. Springer, 2012, pp. 390-401. DO1: 10.1007/978-
3-642-36285-9_42.

Zibin Zheng and Michael R. Lyu. “Selecting an Optimal Fault Tolerance
Strategy for Reliable Service-Oriented Systems with Local and Global
Constraints”. In: IEEE Transactions on Computers 64 (2015), pp. 219-
232. por1: 10.1109/TC.2013.189.

Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin
Wang. “Blockchain Challenges and Opportunities: A Survey”. In: Inter-
national Journal of Web and Grid Services 14.4 (2018), pp. 352-375. DOL:
10.1504/IJWGS.2018.095647.

Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin
Wang. “An Overview of Blockchain Technology: Architecture, Consensus,
and Future Trends”. In: IEEFE International Congress on Big Data. IEEE.
2017, pp. 557-564. pOI: 10.1109/BigbhataCongress.2017.85.

Aviv Zohar. “Bitcoin: Under the Hood”. In: Communications of the ACM
58.9 (2015), pp. 104-113. por: 10.1145/2701411.

159

https://doi.org/10.1145/2788397
https://doi.org/10.1007/s13174-010-0007-6
https://doi.org/10.1007/s13174-010-0007-6
https://releases.republicprotocol.com/whitepaper/1.0.0/whitepaper_1.0.0.pdf
https://releases.republicprotocol.com/whitepaper/1.0.0/whitepaper_1.0.0.pdf
https://doi.org/10.1007/978-3-642-36285-9_42
https://doi.org/10.1007/978-3-642-36285-9_42
https://doi.org/10.1109/TC.2013.189
https://doi.org/10.1504/IJWGS.2018.095647
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1145/2701411

APPENDIX

Curriculum Vitae

Address: Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR)
Lilienthalplatz 7
38108 Braunschweig
Germany

Website: www.borkowski.at

E-Mail: michael@borkowski.at

Education

2015/11 — ongoing ~ Computer Science (Doctoral Studies)
2012/09 — 2015/10 Software Engineering & Internet Computing (Master Studies)
2009/10 — 2012/09 Software and Information Engineering (Bachelor Studies)

Professional Experience

2019/05 — ongoing Research Scientist, German Aerospace Center (DLR)
2015/11 — 2019/04 Research Assistant, TU Wien

2015/05 — 2015/10 Software Developer, EclipseSource Services GmbH
2013/12 — 2015/04 Systems Architect & DevOps, Flatout Technologies GmbH
2010/10 — 2014/02 Teaching Assistant, TU Wien

2010/08 — 2010/09 Internship, ASFINAG Service GmbH

2008/07 Internship, Siemens AG Osterreich

2007/07 Internship, Siemens AG Osterreich

161

www.borkowski.at
mailto:michael@borkowski.at

A. CURRICULUM VITE

Research

Fields of Interest: Optimization of cost, performance and resource utilization in
cloud computing; cloud manufacturing, Industry 4.0, Industrial IoT; prediction-
based proactive systems; machine learning; blockchain technologies.

Projects

2019/05 — ongoing

2019/05 — ongoing

2018/03 — 2019/04
2015/11 — 2017/12

2014/03 — 2014/11

City-ATM (DLR Institutional Funding)
Demonstration of Traffic Management in Urban Airspace

RESPONDRONE (EU H2020 RIA)

Novel Integrated Solution of Operating a Fleet of
Drones with Multiple Synchronized Missions for
Disaster Responses

TAST (Bitpanda GmbH /Pantos GmbH)
Token Atomic Swap Technology

CREMA (EU H2020 RIA)
Cloud-based Rapid Elastic Manufacturing

SIMPLI-CITY (EU FP7)
The Road User Information System of the Future

Scientific Activities and Services

ZEUS Workshop 2019 and 2020: Member of the Program Committee

Elsevier Robotics and Computer-Integrated Manufacturing: Reviewer

o ACM Transactions on the Web: Reviewer

e [EEE Transactions on Cloud Computing: Reviewer

IEEE Transactions on Services Computing: Reviewer

e [EEE Communications Surveys and Tutorials: Reviewer

Wiley Concurrency and Computation: Practice and Experience: Reviewer

Assistance Supervision of Theses

e Dragan Tosic: Blockchain Interoperability: A Cross-Chain Token Transfer
Protocol. Diploma Thesis, TU Wien (ongoing).

e Sabine Weninger: Data Prefetching in Smart Systems, Bachelor’s Thesis.
TU Wien, April 2018.

e Christian Schubert: Trustworthy Measurement and Arbitration of Service
Level Agreements in the Cloud. Diploma Thesis, TU Wien, January 2018.

162

Publications

The following list shows the author’s publications to date. An updated list of
publications is available on the author’s website!.

Journal Articles

e Michael Borkowski, Marten Sigwart, Philipp Frauenthaler, Taneli Hukki-
nen, and Stefan Schulte. “DeXTT: Deterministic Cross-Blockchain To-
ken Transfers”. In: IEEE Access 7.1 (2019), pp. 111030-111042. po1:
10.1109/ACCESS.2019.2934707.

e Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. “Minimiz-
ing Cost by Reducing Scaling Operations in Distributed Stream Process-

ing”. In: PVLDB 12.7 (2019), pp. 724-737. por: 10.14778/3317315.

3317316.

e Michael Borkowski, Walid Fdhila, Matteo Nardelli, Stefanie Rinderle-
Ma, and Stefan Schulte. “Event-Based Failure Prediction in Distributed
Business Processes”. In: Information Systems 81 (2019), pp. 220-235.
DOI: 10.1016/3.1s.2017.12.005.

e Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and
Philipp Leitner. “Optimized IoT Service Placement in the Fog”. In:
Service Oriented Computing and Applications 11.4 (2017), pp. 427-443.
DOI: 10.1007/s11761-017-0219-8.

Conference and Workshop Proceedings

e Philipp Frauenthaler, Michael Borkowski, and Stefan Schulte. “A Frame-
work for Assessing and Selecting Blockchains at Runtime (short paper,

accepted for publication)”. In: IEEE International Conference on Decen-
tralized Applications and Infrastructures (DAPPS). 2020, nn—nn.

e Marten Sigwart, Michael Borkowski, Marco Peise, Stefan Schulte, and
Stefan Tai. “Blockchain-Based Data Provenance for the Internet of Things”.
In: 9th International Conference on the Internet of Things (IoT). 2019,
pp- 1-8. DO1: 10.1145/3365871.3365886.

e Vasileios Karagiannis, Alexandre Venito, Rodrigo Coelho, Michael Borkow-
ski, and Gerhard Fohler. “Edge Computing with Peer to Peer Interactions:
Use Cases and Impact”. In: Workshop on Fog Computing and the Internet
of Things (Fog-IoT). 2019, pp. 1-5. DOI: 10.1145/3313150.3313226.

"http://www.borkowski.at/

163

https://doi.org/10.1109/ACCESS.2019.2934707
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.14778/3317315.3317316
https://doi.org/10.1016/j.is.2017.12.005
https://doi.org/10.1007/s11761-017-0219-8
https://doi.org/10.1145/3365871.3365886
https://doi.org/10.1145/3313150.3313226
http://www.borkowski.at/

A. CURRICULUM VITE

164

Sabine Weninger and Michael Borkowski. “Data Prefetching in Smart
Systems”. In: 22nd IEEE International Enterprise Distributed Object
Computing Conference (EDOC). 2018, pp. 204-207. pol: 10.1109/
EDOCW.2018.00037. Demo paper.

Christian Schubert, Michael Borkowski, and Stefan Schulte. “Trustworthy
Detection and Arbitration of SLA Violations in the Cloud”. In: 7th
European Conference on Service-Oriented and Cloud Computing (ESOCC).
LNCS 11116. 2018, pp. 5-16. DOL: 10.1007/978-3-319-99819-0_7.

Philipp Waibel, Svetoslav Videnov, Michael Borkowski, Christoph Hochrei-
ner, Stefan Schulte, and Jan Mendling. “Process Simulation for Ma-
chine Reservation in Cloud Manufacturing”. In: 16th IEEE International
Conference on Industrial Informatics (INDIN). 2018, pp. 270-277. DOI:
10.1109/INDIN.2018.8472038.

Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. “Moderated
Resource Elasticity for Stream Processing Applications”. In: Parallel
Processing Workshops (Euro-Par). LNCS 10659. Springer, 2017, pp. 5-16.
DOI: 10.1007/978-3-319-75178-8_1.

Michael Borkowski, Stefan Schulte, and Christoph Hochreiner. “Predicting
Cloud Resource Utilization”. In: 9th IEEE/ACM International Conference
on Utility and Cloud Computing (UCC). IEEE/ACM, 2016, pp. 37-42.
DOI: 10.1145/2996890.2996907.

Olena Skarlat, Stefan Schulte, Michael Borkowski, and Philipp Leitner.
“Resource Provisioning for IoT Services in the Fog”. In: 9th IEEE In-
ternational Conference on Service-Oriented Computing and Applications
(SOCA). 2016, pp. 32-39. DOI: 10.1109/SOCA.2016.10.

Michael Borkowski, Olena Skarlat, Stefan Schulte, and Schahram Dustdar.
“Prediction-Based Prefetch Scheduling in Mobile Service Applications”.
In: 2016 IEEE International Conference on Mobile Services (MS). 2016,
pp. 41-48. poI: 10.1109/MobServ.2016.17.

Christoph Hochreiner, Philipp Waibel, and Michael Borkowski. “Bridging
gaps in cloud manufacturing with 3D printing”. In: Informatik 2016, 46.
Jahrestagung der Gesellschaft fiir Informatik. Lecture Notes in Informatics
vol. 259. 2016, pp. 1623-1626.

Olena Skarlat, Michael Borkowski, and Stefan Schulte. “Towards a method-
ology and instrumentation toolset for cloud manufacturing”. In: 1st Inter-
national Workshop on Cyber-Physical Production Systems (CPPS). IEEE.
2016, pp. 1-4.

Stefan Schulte, Michael Borkowski, Christoph Hochreiner, Matthias Klusch,
Aitor Murguzur, Olena Skarlat, and Philipp Waibel. “Bringing Cloud-
based Rapid Elastic Manufacturing to Reality with CREMA”. in: Work-
shop on Intelligent Systems Configuration Services for Flexible Dynamic
Global Production Networks (FLEXINET). Springer. 2016, pp. 407-413.

https://doi.org/10.1109/EDOCW.2018.00037
https://doi.org/10.1109/EDOCW.2018.00037
https://doi.org/10.1007/978-3-319-99819-0_7
https://doi.org/10.1109/INDIN.2018.8472038
https://doi.org/10.1007/978-3-319-75178-8_1
https://doi.org/10.1145/2996890.2996907
https://doi.org/10.1109/SOCA.2016.10
https://doi.org/10.1109/MobServ.2016.17

Unrefereed Papers

o Stefan Schulte, Marten Sigwart, Philipp Frauenthaler, and Michael Borkowski.
“Towards Blockchain Interoperability”. In: BPM Blockchain and Central
and Eastern FEurope Forum. LNBIP 361. Springer. 2019, pp. 3—10. DOI:
10.1007/978-3-030-30429-4_1.

e Michael Borkowski, Marten Sigwart, Philipp Frauenthaler, Taneli Hukki-
nen, and Stefan Schulte. DeXTT: Deterministic Cross-Blockchain Token
Transfers. 2019. arXiv, Article 1905.06204.

e Michael Borkowski, Philipp Frauenthaler, Marten Sigwart, Taneli Hukki-
nen, Oskar Hladky, and Stefan Schulte. Cross-Blockchain Technologies:
Review, State of the Art, and Outlook. 2019. DOI: 10.13140/RG.2.2.
30902.14403. White Paper, TU Wien.

e Michael Borkowski, Christoph Ritzer, and Stefan Schulte. Deterministic
Witnesses for Claim-First Transactions. 2018. DOI: 10.13140/RG.2.2.
17480.37123. White Paper, Technische Universitdt Wien.

e Marten Sigwart, Christoph Hochreiner, Michael Borkowski, and Stefan
Schulte. FakeLoad: An Open-Source Load Generator. Tech. rep. TUV-
1942-2018-01. Distributed Systems Group, TU Wien, 2018.

e Michael Borkowski, Christoph Ritzer, Daniel McDonald, and Stefan
Schulte. Caught in Chains: Claim-First Transactions for Cross-Blockchain
Asset Transfers. 2018. DO1: 10.13140/RG.2.2.24191.25769. White
Paper, TU Wien.

e Michael Borkowski, Daniel McDonald, Christoph Ritzer, and Stefan
Schulte. Towards Atomic Cross-Chain Token Transfers: State of the
Art and Open Questions within TAST. 2018. po1: 10.13140/RG.2.2.
10769.48489. White Paper, TU Wien.

e Michael Borkowski, Walid Fdhila, Matteo Nardelli, Stefanie Rinderle-
Ma, and Stefan Schulte. “Event-based Failure Prediction in Distributed
Business Processes”. In: CoRR arXiv:1712.08342 (2018).

Theses

e “Smart Prefetching for Mobile Users under Volatile Network Conditions”.
Diploma Thesis. TU Wien, 2015

e “ACTA in a Nutshell: Das Handelsabkommen ACTA in seinen wichtigsten
Ziigen”. Bachelor’s Thesis. TU Wien, 2012

165

https://doi.org/10.1007/978-3-030-30429-4_1
https://doi.org/10.13140/RG.2.2.30902.14403
https://doi.org/10.13140/RG.2.2.30902.14403
https://doi.org/10.13140/RG.2.2.17480.37123
https://doi.org/10.13140/RG.2.2.17480.37123
https://doi.org/10.13140/RG.2.2.24191.25769
https://doi.org/10.13140/RG.2.2.10769.48489
https://doi.org/10.13140/RG.2.2.10769.48489

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Acronyms
	Publications
	Introduction
	Problem Statement
	Research Questions
	Scientific Contributions
	Thesis Structure

	Background
	Distributed Systems
	Elasticity Approaches
	Prediction Techniques
	Artificial Neural Networks
	State of the Art

	Predicting Resource Utilization
	Fundamentals
	Prediction of Resource Utilization
	Evaluation
	Performance Analysis
	Related Work
	Summary

	Failure Prediction in Business Processes
	Fundamentals
	Solution Overview
	ML Failure Prediction
	Evaluation
	Related Work
	Summary

	Predictive Cloud Scaling
	Scaling using EKF
	Evaluation
	Experiments and Results
	Related Work
	Summary

	Deterministic Contests in Blockchain Transactions
	Fundamentals
	Decentralized Cross-Blockchain Transfers
	Evaluation
	Related Work
	Summary

	Conclusions
	Research Questions Revisited
	Findings
	Future Work

	Bibliography
	Curriculum Vitæ

